- Introduction of dynamic Retrievers & Specialists

- Introduction of dynamic Processors
- Introduction of caching system
- Introduction of a better template manager
- Adaptation of ModelVariables to support dynamic Processors / Retrievers / Specialists
- Start adaptation of chat client
This commit is contained in:
Josako
2024-11-15 10:00:53 +01:00
parent 55a8a95f79
commit 1807435339
101 changed files with 4181 additions and 1764 deletions

View File

@@ -0,0 +1,23 @@
# Output Schema Management - common/langchain/outputs/base.py
from typing import Dict, Type, Any
from pydantic import BaseModel
class BaseSpecialistOutput(BaseModel):
"""Base class for all specialist outputs"""
pass
class OutputRegistry:
"""Registry for specialist output schemas"""
_schemas: Dict[str, Type[BaseSpecialistOutput]] = {}
@classmethod
def register(cls, specialist_type: str, schema_class: Type[BaseSpecialistOutput]):
cls._schemas[specialist_type] = schema_class
@classmethod
def get_schema(cls, specialist_type: str) -> Type[BaseSpecialistOutput]:
if specialist_type not in cls._schemas:
raise ValueError(f"No output schema registered for {specialist_type}")
return cls._schemas[specialist_type]

View File

@@ -0,0 +1,22 @@
# RAG Specialist Output - common/langchain/outputs/rag.py
from typing import List
from pydantic import Field
from .base import BaseSpecialistOutput
class RAGOutput(BaseSpecialistOutput):
"""Output schema for RAG specialist"""
"""Default docstring - to be replaced with actual prompt"""
answer: str = Field(
...,
description="The answer to the user question, based on the given sources",
)
citations: List[int] = Field(
...,
description="The integer IDs of the SPECIFIC sources that were used to generate the answer"
)
insufficient_info: bool = Field(
False, # Default value is set to False
description="A boolean indicating whether given sources were sufficient or not to generate the answer"
)