- Introduction of dynamic Retrievers & Specialists
- Introduction of dynamic Processors - Introduction of caching system - Introduction of a better template manager - Adaptation of ModelVariables to support dynamic Processors / Retrievers / Specialists - Start adaptation of chat client
This commit is contained in:
23
common/langchain/outputs/base.py
Normal file
23
common/langchain/outputs/base.py
Normal file
@@ -0,0 +1,23 @@
|
||||
# Output Schema Management - common/langchain/outputs/base.py
|
||||
from typing import Dict, Type, Any
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class BaseSpecialistOutput(BaseModel):
|
||||
"""Base class for all specialist outputs"""
|
||||
pass
|
||||
|
||||
|
||||
class OutputRegistry:
|
||||
"""Registry for specialist output schemas"""
|
||||
_schemas: Dict[str, Type[BaseSpecialistOutput]] = {}
|
||||
|
||||
@classmethod
|
||||
def register(cls, specialist_type: str, schema_class: Type[BaseSpecialistOutput]):
|
||||
cls._schemas[specialist_type] = schema_class
|
||||
|
||||
@classmethod
|
||||
def get_schema(cls, specialist_type: str) -> Type[BaseSpecialistOutput]:
|
||||
if specialist_type not in cls._schemas:
|
||||
raise ValueError(f"No output schema registered for {specialist_type}")
|
||||
return cls._schemas[specialist_type]
|
||||
Reference in New Issue
Block a user