- Introduction of dynamic Retrievers & Specialists

- Introduction of dynamic Processors
- Introduction of caching system
- Introduction of a better template manager
- Adaptation of ModelVariables to support dynamic Processors / Retrievers / Specialists
- Start adaptation of chat client
This commit is contained in:
Josako
2024-11-15 10:00:53 +01:00
parent 55a8a95f79
commit 1807435339
101 changed files with 4181 additions and 1764 deletions

View File

@@ -0,0 +1,5 @@
# Import all specialist implementations here to ensure registration
from . import standard_rag
# List of all available specialist implementations
__all__ = ['standard_rag']

View File

@@ -0,0 +1,57 @@
from abc import ABC, abstractmethod, abstractproperty
from typing import Dict, Any, List
from flask import current_app
from eveai_chat_workers.retrievers.retriever_typing import RetrieverResult, RetrieverArguments
from config.logging_config import TuningLogger
class BaseRetriever(ABC):
"""Base class for all retrievers"""
def __init__(self, tenant_id: int, retriever_id: int):
self.tenant_id = tenant_id
self.retriever_id = retriever_id
self.tuning = False
self.tuning_logger = None
self._setup_tuning_logger()
@property
@abstractmethod
def type(self) -> str:
"""The type of the retriever"""
pass
def _setup_tuning_logger(self):
try:
self.tuning_logger = TuningLogger(
'tuning',
tenant_id=self.tenant_id,
retriever_id=self.retriever_id,
)
# Verify logger is working with a test message
if self.tuning:
self.tuning_logger.log_tuning('retriever', "Tuning logger initialized")
except Exception as e:
current_app.logger.error(f"Failed to setup tuning logger: {str(e)}")
raise
def _log_tuning(self, message: str, data: Dict[str, Any] = None) -> None:
if self.tuning and self.tuning_logger:
try:
self.tuning_logger.log_tuning('retriever', message, data)
except Exception as e:
current_app.logger.error(f"Processor: Error in tuning logging: {e}")
@abstractmethod
def retrieve(self, arguments: RetrieverArguments) -> List[RetrieverResult]:
"""
Retrieve relevant documents based on provided arguments
Args:
arguments: Dictionary of arguments for the retrieval operation
Returns:
List[Dict[str, Any]]: List of retrieved documents/content
"""
pass

View File

@@ -0,0 +1,20 @@
from typing import Dict, Type
from .base import BaseRetriever
class RetrieverRegistry:
"""Registry for retriever types"""
_registry: Dict[str, Type[BaseRetriever]] = {}
@classmethod
def register(cls, retriever_type: str, retriever_class: Type[BaseRetriever]):
"""Register a new retriever type"""
cls._registry[retriever_type] = retriever_class
@classmethod
def get_retriever_class(cls, retriever_type: str) -> Type[BaseRetriever]:
"""Get the retriever class for a given type"""
if retriever_type not in cls._registry:
raise ValueError(f"Unknown retriever type: {retriever_type}")
return cls._registry[retriever_type]

View File

@@ -0,0 +1,60 @@
from typing import List, Dict, Any
from pydantic import BaseModel, Field, model_validator
from common.utils.config_field_types import ArgumentDefinition, TaggingFields
from config.retriever_types import RETRIEVER_TYPES
class RetrieverMetadata(BaseModel):
"""Metadata structure for retrieved documents"""
document_id: int = Field(..., description="ID of the source document")
version_id: int = Field(..., description="Version ID of the source document")
document_name: str = Field(..., description="Name of the source document")
user_metadata: Dict[str, Any] = Field(
default_factory=dict, # This will use an empty dict if None is provided
description="User-defined metadata"
)
class RetrieverResult(BaseModel):
"""Standard result format for all retrievers"""
id: int = Field(..., description="ID of the retrieved embedding")
chunk: str = Field(..., description="Retrieved text chunk")
similarity: float = Field(..., description="Similarity score (0-1)")
metadata: RetrieverMetadata = Field(..., description="Associated metadata")
class RetrieverArguments(BaseModel):
"""
Dynamic arguments for retrievers, allowing arbitrary fields but validating required ones
based on RETRIEVER_TYPES configuration.
"""
type: str = Field(..., description="Type of retriever (e.g. STANDARD_RAG)")
# Allow any additional fields
model_config = {
"extra": "allow"
}
@model_validator(mode='after')
def validate_required_arguments(self) -> 'RetrieverArguments':
"""Validate that all required arguments for this retriever type are present"""
retriever_config = RETRIEVER_TYPES.get(self.type)
if not retriever_config:
raise ValueError(f"Unknown retriever type: {self.type}")
# Check required arguments from configuration
for arg_name, arg_config in retriever_config['arguments'].items():
if arg_config.get('required', False):
if not hasattr(self, arg_name):
raise ValueError(f"Missing required argument '{arg_name}' for {self.type}")
# Type validation
value = getattr(self, arg_name)
expected_type = arg_config['type']
if expected_type == 'str' and not isinstance(value, str):
raise ValueError(f"Argument '{arg_name}' must be a string")
elif expected_type == 'int' and not isinstance(value, int):
raise ValueError(f"Argument '{arg_name}' must be an integer")
# Add other type validations as needed
return self

View File

@@ -0,0 +1,140 @@
# retrievers/standard_rag.py
from datetime import datetime as dt, timezone as tz
from typing import Dict, Any, List
from sqlalchemy import func, or_, desc
from sqlalchemy.exc import SQLAlchemyError
from flask import current_app
from common.extensions import db
from common.models.document import Document, DocumentVersion, Catalog, Retriever
from common.models.user import Tenant
from common.utils.datetime_utils import get_date_in_timezone
from common.utils.model_utils import get_model_variables
from .base import BaseRetriever
from .registry import RetrieverRegistry
from .retriever_typing import RetrieverArguments, RetrieverResult, RetrieverMetadata
class StandardRAGRetriever(BaseRetriever):
"""Standard RAG retriever implementation"""
def __init__(self, tenant_id: int, retriever_id: int):
super().__init__(tenant_id, retriever_id)
retriever = Retriever.query.get_or_404(retriever_id)
self.catalog_id = retriever.catalog_id
self.similarity_threshold = retriever.configuration.get('es_similarity_threshold', 0.3)
self.k = retriever.configuration.get('es_k', 8)
self.tuning = retriever.tuning
self.model_variables = get_model_variables(self.tenant_id)
self._log_tuning("Standard RAG retriever initialized")
@property
def type(self) -> str:
return "STANDARD_RAG"
def retrieve(self, arguments: RetrieverArguments) -> List[RetrieverResult]:
"""
Retrieve documents based on query
Args:
arguments: Validated RetrieverArguments containing at minimum:
- query: str - The search query
Returns:
List[RetrieverResult]: List of retrieved documents with similarity scores
"""
try:
query = arguments.query
# Get query embedding
query_embedding = self._get_query_embedding(query)
# Get the appropriate embedding database model
db_class = self.model_variables.embedding_model_class
# Get current date for validity checks
current_date = dt.now(tz=tz.utc).date()
# Create subquery for latest versions
subquery = (
db.session.query(
DocumentVersion.doc_id,
func.max(DocumentVersion.id).label('latest_version_id')
)
.group_by(DocumentVersion.doc_id)
.subquery()
)
# Main query
query_obj = (
db.session.query(
db_class,
(1 - db_class.embedding.cosine_distance(query_embedding)).label('similarity')
)
.join(DocumentVersion, db_class.doc_vers_id == DocumentVersion.id)
.join(Document, DocumentVersion.doc_id == Document.id)
.join(subquery, DocumentVersion.id == subquery.c.latest_version_id)
.filter(
or_(Document.valid_from.is_(None), func.date(Document.valid_from) <= current_date),
or_(Document.valid_to.is_(None), func.date(Document.valid_to) >= current_date),
(1 - db_class.embedding.cosine_distance(query_embedding)) > self.similarity_threshold,
Document.catalog_id == self.catalog_id
)
.order_by(desc('similarity'))
.limit(self.k)
)
results = query_obj.all()
# Transform results into standard format
processed_results = []
for doc, similarity in results:
processed_results.append(
RetrieverResult(
id=doc.id,
chunk=doc.chunk,
similarity=float(similarity),
metadata=RetrieverMetadata(
document_id=doc.document_version.doc_id,
version_id=doc.document_version.id,
document_name=doc.document_version.document.name,
user_metadata=doc.document_version.user_metadata or {},
)
)
)
# Log the retrieval
if self.tuning:
compiled_query = str(query_obj.statement.compile(
compile_kwargs={"literal_binds": True} # This will include the actual values in the SQL
))
self._log_tuning('retrieve', {
"arguments": arguments.model_dump(),
"similarity_threshold": self.similarity_threshold,
"k": self.k,
"query": compiled_query,
"Raw Results": str(results),
"Processed Results": [r.model_dump() for r in processed_results],
})
return processed_results
except SQLAlchemyError as e:
current_app.logger.error(f'Error in RAG retrieval: {e}')
db.session.rollback()
raise
except Exception as e:
current_app.logger.error(f'Unexpected error in RAG retrieval: {e}')
raise
def _get_query_embedding(self, query: str):
"""Get embedding for the query text"""
embedding_model = self.model_variables.embedding_model
return embedding_model.embed_query(query)
# Register the retriever type
RetrieverRegistry.register("STANDARD_RAG", StandardRAGRetriever)