- Implementation of specialist execution api, including SSE protocol

- eveai_chat becomes deprecated and should be replaced with SSE
- Adaptation of STANDARD_RAG specialist
- Base class definition allowing to realise specialists with crewai framework
- Implementation of SPIN_SPECIALIST
- Implementation of test app for testing specialists (test_specialist_client). Also serves as an example for future SSE-based client
- Improvements to startup scripts to better handle and scale multiple connections
- Small improvements to the interaction forms and views
- Caching implementation improved and augmented with additional caches
This commit is contained in:
Josako
2025-02-20 05:50:16 +01:00
parent d106520d22
commit 25213f2004
79 changed files with 2791 additions and 347 deletions

View File

@@ -0,0 +1,220 @@
from typing import Dict, Any, Type, TypeVar, List
from abc import ABC, abstractmethod
from flask import current_app
from common.extensions import cache_manager, db
from common.models.interaction import EveAIAgent, EveAITask, EveAITool, Specialist
from common.utils.cache.crewai_configuration import (
ProcessedAgentConfig, ProcessedTaskConfig, ProcessedToolConfig,
SpecialistProcessedConfig
)
T = TypeVar('T') # For generic model types
class BaseCrewAIConfigProcessor:
"""Base processor for specialist configurations"""
# Standard mapping between model fields and template placeholders
AGENT_FIELD_MAPPING = {
'role': 'custom_role',
'goal': 'custom_goal',
'backstory': 'custom_backstory'
}
TASK_FIELD_MAPPING = {
'task_description': 'custom_description',
'expected_output': 'custom_expected_output'
}
def __init__(self, tenant_id: int, specialist_id: int):
self.tenant_id = tenant_id
self.specialist_id = specialist_id
self.specialist = self._get_specialist()
self.verbose = self._get_verbose_setting()
def _get_specialist(self) -> Specialist:
"""Get specialist and verify existence"""
specialist = Specialist.query.get(self.specialist_id)
if not specialist:
raise ValueError(f"Specialist {self.specialist_id} not found")
return specialist
def _get_verbose_setting(self) -> bool:
"""Get verbose setting from specialist"""
return bool(self.specialist.tuning)
def _get_db_items(self, model_class: Type[T], type_list: List[str]) -> Dict[str, T]:
"""Get database items of specified type"""
items = (model_class.query
.filter_by(specialist_id=self.specialist_id)
.filter(model_class.type.in_(type_list))
.all())
return {item.type: item for item in items}
def _apply_replacements(self, text: str, replacements: Dict[str, str]) -> str:
"""Apply text replacements to a string"""
result = text
for key, value in replacements.items():
if value is not None: # Only replace if value exists
placeholder = "{" + key + "}"
result = result.replace(placeholder, str(value))
return result
def _process_agent_configs(self, specialist_config: Dict[str, Any]) -> Dict[str, ProcessedAgentConfig]:
"""Process all agent configurations"""
agent_configs = {}
if 'agents' not in specialist_config:
return agent_configs
# Get all DB agents at once
agent_types = [agent_def['type'] for agent_def in specialist_config['agents']]
db_agents = self._get_db_items(EveAIAgent, agent_types)
for agent_def in specialist_config['agents']:
agent_type = agent_def['type']
agent_type_lower = agent_type.lower()
db_agent = db_agents.get(agent_type)
# Get full configuration
config = cache_manager.agents_config_cache.get_config(
agent_type,
agent_def.get('version', '1.0')
)
# Start with YAML values
role = config['role']
goal = config['goal']
backstory = config['backstory']
# Apply DB values if they exist
if db_agent:
for model_field, placeholder in self.AGENT_FIELD_MAPPING.items():
value = getattr(db_agent, model_field)
if value:
placeholder_text = "{" + placeholder + "}"
role = role.replace(placeholder_text, value)
goal = goal.replace(placeholder_text, value)
backstory = backstory.replace(placeholder_text, value)
agent_configs[agent_type_lower] = ProcessedAgentConfig(
role=role,
goal=goal,
backstory=backstory,
name=agent_def.get('name') or config.get('name', agent_type_lower),
type=agent_type,
description=agent_def.get('description') or config.get('description'),
verbose=self.verbose
)
return agent_configs
def _process_task_configs(self, specialist_config: Dict[str, Any]) -> Dict[str, ProcessedTaskConfig]:
"""Process all task configurations"""
task_configs = {}
if 'tasks' not in specialist_config:
return task_configs
# Get all DB tasks at once
task_types = [task_def['type'] for task_def in specialist_config['tasks']]
db_tasks = self._get_db_items(EveAITask, task_types)
for task_def in specialist_config['tasks']:
task_type = task_def['type']
task_type_lower = task_type.lower()
db_task = db_tasks.get(task_type)
# Get full configuration
config = cache_manager.tasks_config_cache.get_config(
task_type,
task_def.get('version', '1.0')
)
# Start with YAML values
task_description = config['task_description']
expected_output = config['expected_output']
# Apply DB values if they exist
if db_task:
for model_field, placeholder in self.TASK_FIELD_MAPPING.items():
value = getattr(db_task, model_field)
if value:
placeholder_text = "{" + placeholder + "}"
task_description = task_description.replace(placeholder_text, value)
expected_output = expected_output.replace(placeholder_text, value)
task_configs[task_type_lower] = ProcessedTaskConfig(
task_description=task_description,
expected_output=expected_output,
name=task_def.get('name') or config.get('name', task_type_lower),
type=task_type,
description=task_def.get('description') or config.get('description'),
verbose=self.verbose
)
return task_configs
def _process_tool_configs(self, specialist_config: Dict[str, Any]) -> Dict[str, ProcessedToolConfig]:
"""Process all tool configurations"""
tool_configs = {}
if 'tools' not in specialist_config:
return tool_configs
# Get all DB tools at once
tool_types = [tool_def['type'] for tool_def in specialist_config['tools']]
db_tools = self._get_db_items(EveAITool, tool_types)
for tool_def in specialist_config['tools']:
tool_type = tool_def['type']
tool_type_lower = tool_type.lower()
db_tool = db_tools.get(tool_type)
# Get full configuration
config = cache_manager.tools_config_cache.get_config(
tool_type,
tool_def.get('version', '1.0')
)
# Combine configuration
tool_config = config.get('configuration', {})
if db_tool and db_tool.configuration:
tool_config.update(db_tool.configuration)
tool_configs[tool_type_lower] = ProcessedToolConfig(
name=tool_def.get('name') or config.get('name', tool_type_lower),
type=tool_type,
description=tool_def.get('description') or config.get('description'),
configuration=tool_config,
verbose=self.verbose
)
return tool_configs
def process_config(self) -> SpecialistProcessedConfig:
"""Process complete specialist configuration"""
try:
# Get full specialist configuration
specialist_config = cache_manager.specialists_config_cache.get_config(
self.specialist.type,
self.specialist.type_version
)
if not specialist_config:
raise ValueError(f"No configuration found for {self.specialist.type}")
# Process all configurations
processed_config = SpecialistProcessedConfig(
agents=self._process_agent_configs(specialist_config),
tasks=self._process_task_configs(specialist_config),
tools=self._process_tool_configs(specialist_config)
)
current_app.logger.debug(f"Processed config for tenant {self.tenant_id}, specialist {self.specialist_id}:\n"
f"{processed_config}")
return processed_config
except Exception as e:
current_app.logger.error(f"Error processing specialist configuration: {e}")
raise