- Implementation of specialist execution api, including SSE protocol

- eveai_chat becomes deprecated and should be replaced with SSE
- Adaptation of STANDARD_RAG specialist
- Base class definition allowing to realise specialists with crewai framework
- Implementation of SPIN_SPECIALIST
- Implementation of test app for testing specialists (test_specialist_client). Also serves as an example for future SSE-based client
- Improvements to startup scripts to better handle and scale multiple connections
- Small improvements to the interaction forms and views
- Caching implementation improved and augmented with additional caches
This commit is contained in:
Josako
2025-02-20 05:50:16 +01:00
parent d106520d22
commit 25213f2004
79 changed files with 2791 additions and 347 deletions

View File

@@ -0,0 +1,126 @@
from dataclasses import dataclass
from typing import Dict, Any, Optional
@dataclass
class ProcessedAgentConfig:
"""Processed and ready-to-use agent configuration"""
role: str
goal: str
backstory: str
name: str
type: str
description: Optional[str] = None
verbose: bool = False
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary for serialization"""
return {
'role': self.role,
'goal': self.goal,
'backstory': self.backstory,
'name': self.name,
'type': self.type,
'description': self.description,
'verbose': self.verbose
}
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> 'ProcessedAgentConfig':
"""Create from dictionary"""
return cls(**data)
@dataclass
class ProcessedTaskConfig:
"""Processed and ready-to-use task configuration"""
task_description: str
expected_output: str
name: str
type: str
description: Optional[str] = None
verbose: bool = False
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary for serialization"""
return {
'task_description': self.task_description,
'expected_output': self.expected_output,
'name': self.name,
'type': self.type,
'description': self.description,
'verbose': self.verbose
}
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> 'ProcessedTaskConfig':
"""Create from dictionary"""
return cls(**data)
@dataclass
class ProcessedToolConfig:
"""Processed and ready-to-use tool configuration"""
name: str
type: str
description: Optional[str] = None
configuration: Optional[Dict[str, Any]] = None
verbose: bool = False
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary for serialization"""
return {
'name': self.name,
'type': self.type,
'description': self.description,
'configuration': self.configuration,
'verbose': self.verbose
}
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> 'ProcessedToolConfig':
"""Create from dictionary"""
return cls(**data)
@dataclass
class SpecialistProcessedConfig:
"""Complete processed configuration for a specialist"""
agents: Dict[str, ProcessedAgentConfig]
tasks: Dict[str, ProcessedTaskConfig]
tools: Dict[str, ProcessedToolConfig]
def to_dict(self) -> Dict[str, Any]:
"""Convert entire configuration to dictionary"""
return {
'agents': {
agent_type: config.to_dict()
for agent_type, config in self.agents.items()
},
'tasks': {
task_type: config.to_dict()
for task_type, config in self.tasks.items()
},
'tools': {
tool_type: config.to_dict()
for tool_type, config in self.tools.items()
}
}
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> 'SpecialistProcessedConfig':
"""Create from dictionary"""
return cls(
agents={
agent_type: ProcessedAgentConfig.from_dict(config)
for agent_type, config in data['agents'].items()
},
tasks={
task_type: ProcessedTaskConfig.from_dict(config)
for task_type, config in data['tasks'].items()
},
tools={
tool_type: ProcessedToolConfig.from_dict(config)
for tool_type, config in data['tools'].items()
}
)