- Organise retrievers
This commit is contained in:
0
common/langchain/retrievers/__init__.py
Normal file
0
common/langchain/retrievers/__init__.py
Normal file
145
common/langchain/retrievers/eveai_default_rag_retriever.py
Normal file
145
common/langchain/retrievers/eveai_default_rag_retriever.py
Normal file
@@ -0,0 +1,145 @@
|
||||
from langchain_core.retrievers import BaseRetriever
|
||||
from sqlalchemy import func, and_, or_, desc
|
||||
from sqlalchemy.exc import SQLAlchemyError
|
||||
from pydantic import BaseModel, Field, PrivateAttr
|
||||
from typing import Any, Dict
|
||||
from flask import current_app
|
||||
|
||||
from common.extensions import db
|
||||
from common.models.document import Document, DocumentVersion
|
||||
from common.utils.datetime_utils import get_date_in_timezone
|
||||
from common.utils.model_utils import ModelVariables
|
||||
|
||||
|
||||
class EveAIDefaultRagRetriever(BaseRetriever, BaseModel):
|
||||
_catalog_id: int = PrivateAttr()
|
||||
_model_variables: ModelVariables = PrivateAttr()
|
||||
_tenant_info: Dict[str, Any] = PrivateAttr()
|
||||
|
||||
def __init__(self, catalog_id: int, model_variables: ModelVariables, tenant_info: Dict[str, Any]):
|
||||
super().__init__()
|
||||
current_app.logger.debug(f'Model variables type: {type(model_variables)}')
|
||||
self._catalog_id = catalog_id
|
||||
self._model_variables = model_variables
|
||||
self._tenant_info = tenant_info
|
||||
|
||||
@property
|
||||
def catalog_id(self) -> int:
|
||||
return self._catalog_id
|
||||
|
||||
@property
|
||||
def model_variables(self) -> ModelVariables:
|
||||
return self._model_variables
|
||||
|
||||
@property
|
||||
def tenant_info(self) -> Dict[str, Any]:
|
||||
return self._tenant_info
|
||||
|
||||
def _get_relevant_documents(self, query: str):
|
||||
current_app.logger.debug(f'Retrieving relevant documents for query: {query}')
|
||||
query_embedding = self._get_query_embedding(query)
|
||||
current_app.logger.debug(f'Model Variables Private: {type(self._model_variables)}')
|
||||
current_app.logger.debug(f'Model Variables Property: {type(self.model_variables)}')
|
||||
db_class = self.model_variables['embedding_db_model']
|
||||
similarity_threshold = self.model_variables['similarity_threshold']
|
||||
k = self.model_variables['k']
|
||||
|
||||
if self.model_variables['rag_tuning']:
|
||||
try:
|
||||
current_date = get_date_in_timezone(self.tenant_info['timezone'])
|
||||
current_app.rag_tuning_logger.debug(f'Current date: {current_date}\n')
|
||||
|
||||
# Debug query to show similarity for all valid documents (without chunk text)
|
||||
debug_query = (
|
||||
db.session.query(
|
||||
Document.id.label('document_id'),
|
||||
DocumentVersion.id.label('version_id'),
|
||||
db_class.id.label('embedding_id'),
|
||||
(1 - db_class.embedding.cosine_distance(query_embedding)).label('similarity')
|
||||
)
|
||||
.join(DocumentVersion, db_class.doc_vers_id == DocumentVersion.id)
|
||||
.join(Document, DocumentVersion.doc_id == Document.id)
|
||||
.filter(
|
||||
or_(Document.valid_from.is_(None), func.date(Document.valid_from) <= current_date),
|
||||
or_(Document.valid_to.is_(None), func.date(Document.valid_to) >= current_date)
|
||||
)
|
||||
.order_by(desc('similarity'))
|
||||
)
|
||||
|
||||
debug_results = debug_query.all()
|
||||
|
||||
current_app.logger.debug("Debug: Similarity for all valid documents:")
|
||||
for row in debug_results:
|
||||
current_app.rag_tuning_logger.debug(f"Doc ID: {row.document_id}, "
|
||||
f"Version ID: {row.version_id}, "
|
||||
f"Embedding ID: {row.embedding_id}, "
|
||||
f"Similarity: {row.similarity}")
|
||||
current_app.rag_tuning_logger.debug(f'---------------------------------------\n')
|
||||
except SQLAlchemyError as e:
|
||||
current_app.logger.error(f'Error generating overview: {e}')
|
||||
db.session.rollback()
|
||||
|
||||
if self.model_variables['rag_tuning']:
|
||||
current_app.rag_tuning_logger.debug(f'Parameters for Retrieval of documents: \n')
|
||||
current_app.rag_tuning_logger.debug(f'Similarity Threshold: {similarity_threshold}\n')
|
||||
current_app.rag_tuning_logger.debug(f'K: {k}\n')
|
||||
current_app.rag_tuning_logger.debug(f'---------------------------------------\n')
|
||||
|
||||
try:
|
||||
current_date = get_date_in_timezone(self.tenant_info['timezone'])
|
||||
# Subquery to find the latest version of each document
|
||||
subquery = (
|
||||
db.session.query(
|
||||
DocumentVersion.doc_id,
|
||||
func.max(DocumentVersion.id).label('latest_version_id')
|
||||
)
|
||||
.group_by(DocumentVersion.doc_id)
|
||||
.subquery()
|
||||
)
|
||||
# Main query to filter embeddings
|
||||
query_obj = (
|
||||
db.session.query(db_class,
|
||||
(1 - db_class.embedding.cosine_distance(query_embedding)).label('similarity'))
|
||||
.join(DocumentVersion, db_class.doc_vers_id == DocumentVersion.id)
|
||||
.join(Document, DocumentVersion.doc_id == Document.id)
|
||||
.join(subquery, DocumentVersion.id == subquery.c.latest_version_id)
|
||||
.filter(
|
||||
or_(Document.valid_from.is_(None), func.date(Document.valid_from) <= current_date),
|
||||
or_(Document.valid_to.is_(None), func.date(Document.valid_to) >= current_date),
|
||||
(1 - db_class.embedding.cosine_distance(query_embedding)) > similarity_threshold,
|
||||
Document.catalog_id == self._catalog_id
|
||||
)
|
||||
.order_by(desc('similarity'))
|
||||
.limit(k)
|
||||
)
|
||||
|
||||
if self.model_variables['rag_tuning']:
|
||||
current_app.rag_tuning_logger.debug(f'Query executed for Retrieval of documents: \n')
|
||||
current_app.rag_tuning_logger.debug(f'{query_obj.statement}\n')
|
||||
current_app.rag_tuning_logger.debug(f'---------------------------------------\n')
|
||||
|
||||
res = query_obj.all()
|
||||
|
||||
if self.model_variables['rag_tuning']:
|
||||
current_app.rag_tuning_logger.debug(f'Retrieved {len(res)} relevant documents \n')
|
||||
current_app.rag_tuning_logger.debug(f'Data retrieved: \n')
|
||||
current_app.rag_tuning_logger.debug(f'{res}\n')
|
||||
current_app.rag_tuning_logger.debug(f'---------------------------------------\n')
|
||||
|
||||
result = []
|
||||
for doc in res:
|
||||
if self.model_variables['rag_tuning']:
|
||||
current_app.rag_tuning_logger.debug(f'Document ID: {doc[0].id} - Distance: {doc[1]}\n')
|
||||
current_app.rag_tuning_logger.debug(f'Chunk: \n {doc[0].chunk}\n\n')
|
||||
result.append(f'SOURCE: {doc[0].id}\n\n{doc[0].chunk}\n\n')
|
||||
|
||||
except SQLAlchemyError as e:
|
||||
current_app.logger.error(f'Error retrieving relevant documents: {e}')
|
||||
db.session.rollback()
|
||||
return []
|
||||
return result
|
||||
|
||||
def _get_query_embedding(self, query: str):
|
||||
embedding_model = self.model_variables['embedding_model']
|
||||
query_embedding = embedding_model.embed_query(query)
|
||||
return query_embedding
|
||||
154
common/langchain/retrievers/eveai_dossier_retriever.py
Normal file
154
common/langchain/retrievers/eveai_dossier_retriever.py
Normal file
@@ -0,0 +1,154 @@
|
||||
from langchain_core.retrievers import BaseRetriever
|
||||
from sqlalchemy import func, and_, or_, desc, cast, JSON
|
||||
from sqlalchemy.exc import SQLAlchemyError
|
||||
from pydantic import BaseModel, Field, PrivateAttr
|
||||
from typing import Any, Dict, List, Optional
|
||||
from flask import current_app
|
||||
from contextlib import contextmanager
|
||||
|
||||
from common.extensions import db
|
||||
from common.models.document import Document, DocumentVersion, Catalog
|
||||
from common.utils.datetime_utils import get_date_in_timezone
|
||||
from common.utils.model_utils import ModelVariables
|
||||
|
||||
|
||||
class EveAIDossierRetriever(BaseRetriever, BaseModel):
|
||||
_catalog_id: int = PrivateAttr()
|
||||
_model_variables: ModelVariables = PrivateAttr()
|
||||
_tenant_info: Dict[str, Any] = PrivateAttr()
|
||||
_active_filters: Optional[Dict[str, Any]] = PrivateAttr()
|
||||
|
||||
def __init__(self, catalog_id: int, model_variables: ModelVariables, tenant_info: Dict[str, Any]):
|
||||
super().__init__()
|
||||
self._catalog_id = catalog_id
|
||||
self._model_variables = model_variables
|
||||
self._tenant_info = tenant_info
|
||||
self._active_filters = None
|
||||
|
||||
@contextmanager
|
||||
def filtering(self, metadata_filters: Dict[str, Any]):
|
||||
"""Context manager for temporarily setting metadata filters"""
|
||||
previous_filters = self._active_filters
|
||||
self._active_filters = metadata_filters
|
||||
try:
|
||||
yield self
|
||||
finally:
|
||||
self._active_filters = previous_filters
|
||||
|
||||
def _build_metadata_filter_conditions(self, query):
|
||||
"""Build SQL conditions for metadata filtering"""
|
||||
if not self._active_filters:
|
||||
return query
|
||||
|
||||
conditions = []
|
||||
for field, value in self._active_filters.items():
|
||||
if value is None:
|
||||
continue
|
||||
|
||||
# Handle both single values and lists of values
|
||||
if isinstance(value, (list, tuple)):
|
||||
# Multiple values - create OR condition
|
||||
or_conditions = []
|
||||
for val in value:
|
||||
or_conditions.append(
|
||||
cast(DocumentVersion.user_metadata[field].astext, JSON) == str(val)
|
||||
)
|
||||
if or_conditions:
|
||||
conditions.append(or_(*or_conditions))
|
||||
else:
|
||||
# Single value - direct comparison
|
||||
conditions.append(
|
||||
cast(DocumentVersion.user_metadata[field].astext, JSON) == str(value)
|
||||
)
|
||||
|
||||
if conditions:
|
||||
query = query.filter(and_(*conditions))
|
||||
|
||||
return query
|
||||
|
||||
def _get_relevant_documents(self, query: str):
|
||||
current_app.logger.debug(f'Retrieving relevant documents for dossier query: {query}')
|
||||
if self._active_filters:
|
||||
current_app.logger.debug(f'Using metadata filters: {self._active_filters}')
|
||||
|
||||
query_embedding = self._get_query_embedding(query)
|
||||
db_class = self.model_variables['embedding_db_model']
|
||||
similarity_threshold = self.model_variables['similarity_threshold']
|
||||
k = self.model_variables['k']
|
||||
|
||||
try:
|
||||
current_date = get_date_in_timezone(self.tenant_info['timezone'])
|
||||
|
||||
# Subquery to find the latest version of each document
|
||||
subquery = (
|
||||
db.session.query(
|
||||
DocumentVersion.doc_id,
|
||||
func.max(DocumentVersion.id).label('latest_version_id')
|
||||
)
|
||||
.group_by(DocumentVersion.doc_id)
|
||||
.subquery()
|
||||
)
|
||||
|
||||
# Build base query
|
||||
# Build base query
|
||||
query_obj = (
|
||||
db.session.query(db_class,
|
||||
(1 - db_class.embedding.cosine_distance(query_embedding)).label('similarity'))
|
||||
.join(DocumentVersion, db_class.doc_vers_id == DocumentVersion.id)
|
||||
.join(Document, DocumentVersion.doc_id == Document.id)
|
||||
.join(subquery, DocumentVersion.id == subquery.c.latest_version_id)
|
||||
.filter(
|
||||
or_(Document.valid_from.is_(None), func.date(Document.valid_from) <= current_date),
|
||||
or_(Document.valid_to.is_(None), func.date(Document.valid_to) >= current_date),
|
||||
(1 - db_class.embedding.cosine_distance(query_embedding)) > similarity_threshold,
|
||||
Document.catalog_id == self._catalog_id
|
||||
)
|
||||
)
|
||||
|
||||
# Apply metadata filters
|
||||
query_obj = self._build_metadata_filter_conditions(query_obj)
|
||||
|
||||
# Order and limit results
|
||||
query_obj = query_obj.order_by(desc('similarity')).limit(k)
|
||||
|
||||
# Debug logging for RAG tuning if enabled
|
||||
if self.model_variables['rag_tuning']:
|
||||
self._log_rag_tuning(query_obj, query_embedding)
|
||||
|
||||
res = query_obj.all()
|
||||
|
||||
result = []
|
||||
for doc in res:
|
||||
if self.model_variables['rag_tuning']:
|
||||
current_app.logger.debug(f'Document ID: {doc[0].id} - Distance: {doc[1]}\n')
|
||||
current_app.logger.debug(f'Chunk: \n {doc[0].chunk}\n\n')
|
||||
result.append(f'SOURCE: {doc[0].id}\n\n{doc[0].chunk}\n\n')
|
||||
|
||||
except SQLAlchemyError as e:
|
||||
current_app.logger.error(f'Error retrieving relevant documents: {e}')
|
||||
db.session.rollback()
|
||||
return []
|
||||
|
||||
return result
|
||||
|
||||
def _log_rag_tuning(self, query_obj, query_embedding):
|
||||
"""Log debug information for RAG tuning"""
|
||||
current_app.rag_tuning_logger.debug("Debug: Query execution plan:")
|
||||
current_app.rag_tuning_logger.debug(f"{query_obj.statement}")
|
||||
if self._active_filters:
|
||||
current_app.rag_tuning_logger.debug("Debug: Active metadata filters:")
|
||||
current_app.rag_tuning_logger.debug(f"{self._active_filters}")
|
||||
|
||||
def _get_query_embedding(self, query: str):
|
||||
"""Get embedding for the query text"""
|
||||
embedding_model = self.model_variables['embedding_model']
|
||||
query_embedding = embedding_model.embed_query(query)
|
||||
return query_embedding
|
||||
|
||||
@property
|
||||
def model_variables(self) -> ModelVariables:
|
||||
return self._model_variables
|
||||
|
||||
@property
|
||||
def tenant_info(self) -> Dict[str, Any]:
|
||||
return self._tenant_info
|
||||
52
common/langchain/retrievers/eveai_history_retriever.py
Normal file
52
common/langchain/retrievers/eveai_history_retriever.py
Normal file
@@ -0,0 +1,52 @@
|
||||
from langchain_core.retrievers import BaseRetriever
|
||||
from sqlalchemy import asc
|
||||
from sqlalchemy.exc import SQLAlchemyError
|
||||
from pydantic import Field, BaseModel, PrivateAttr
|
||||
from typing import Any, Dict
|
||||
from flask import current_app
|
||||
|
||||
from common.extensions import db
|
||||
from common.models.interaction import ChatSession, Interaction
|
||||
from common.utils.model_utils import ModelVariables
|
||||
|
||||
|
||||
class EveAIHistoryRetriever(BaseRetriever, BaseModel):
|
||||
_model_variables: ModelVariables = PrivateAttr()
|
||||
_session_id: str = PrivateAttr()
|
||||
|
||||
def __init__(self, model_variables: ModelVariables, session_id: str):
|
||||
super().__init__()
|
||||
self._model_variables = model_variables
|
||||
self._session_id = session_id
|
||||
|
||||
@property
|
||||
def model_variables(self) -> ModelVariables:
|
||||
return self._model_variables
|
||||
|
||||
@property
|
||||
def session_id(self) -> str:
|
||||
return self._session_id
|
||||
|
||||
def _get_relevant_documents(self, query: str):
|
||||
current_app.logger.debug(f'Retrieving history of interactions for query: {query}')
|
||||
|
||||
try:
|
||||
query_obj = (
|
||||
db.session.query(Interaction)
|
||||
.join(ChatSession, Interaction.chat_session_id == ChatSession.id)
|
||||
.filter(ChatSession.session_id == self.session_id)
|
||||
.order_by(asc(Interaction.id))
|
||||
)
|
||||
|
||||
interactions = query_obj.all()
|
||||
|
||||
result = []
|
||||
for interaction in interactions:
|
||||
result.append(f'HUMAN:\n{interaction.detailed_question}\n\nAI: \n{interaction.answer}\n\n')
|
||||
|
||||
except SQLAlchemyError as e:
|
||||
current_app.logger.error(f'Error retrieving history of interactions: {e}')
|
||||
db.session.rollback()
|
||||
return []
|
||||
|
||||
return result
|
||||
40
common/langchain/retrievers/eveai_retriever.py
Normal file
40
common/langchain/retrievers/eveai_retriever.py
Normal file
@@ -0,0 +1,40 @@
|
||||
from pydantic import BaseModel, PrivateAttr
|
||||
from typing import Dict, Any
|
||||
|
||||
from common.utils.model_utils import ModelVariables
|
||||
|
||||
|
||||
class EveAIRetriever(BaseModel):
|
||||
_catalog_id: int = PrivateAttr()
|
||||
_user_metadata: Dict[str, Any] = PrivateAttr()
|
||||
_system_metadata: Dict[str, Any] = PrivateAttr()
|
||||
_configuration: Dict[str, Any] = PrivateAttr()
|
||||
_tenant_info: Dict[str, Any] = PrivateAttr()
|
||||
_model_variables: ModelVariables = PrivateAttr()
|
||||
_tuning: bool = PrivateAttr()
|
||||
|
||||
def __init__(self, catalog_id: int, user_metadata: Dict[str, Any], system_metadata: Dict[str, Any],
|
||||
configuration: Dict[str, Any]):
|
||||
super().__init__()
|
||||
self._catalog_id = catalog_id
|
||||
self._user_metadata = user_metadata
|
||||
self._system_metadata = system_metadata
|
||||
self._configuration = configuration
|
||||
|
||||
@property
|
||||
def catalog_id(self):
|
||||
return self._catalog_id
|
||||
|
||||
@property
|
||||
def user_metadata(self):
|
||||
return self._user_metadata
|
||||
|
||||
@property
|
||||
def system_metadata(self):
|
||||
return self._system_metadata
|
||||
|
||||
@property
|
||||
def configuration(self):
|
||||
return self._configuration
|
||||
|
||||
# Any common methods that should be shared among retrievers can go here.
|
||||
Reference in New Issue
Block a user