- Change TRAICIE_VACANCY_DEFINTION_SPECIALIST to TRAICIE_ROLE_DEFINITION_SPECIALIST

- Introduce new vanilla-jsoneditor iso older jsoneditor (for viewing a.o. ChatSessions)
- Introduce use of npm to install required javascript libraries
- update Material-kit-pro
- Introduce new top bar to show session defaults, remove old navbar buttons
- Correct Task & Tools editor
This commit is contained in:
Josako
2025-05-27 17:37:32 +02:00
parent 1fdbd2ff45
commit 5123de55cc
1041 changed files with 4480 additions and 292099 deletions

View File

@@ -0,0 +1,13 @@
from typing import List, Optional
from pydantic import BaseModel, Field
from eveai_chat_workers.outputs.globals.basic_types.list_item import ListItem
# class BehaviouralCompetence(BaseModel):
# title: str = Field(..., description="The title of the behavioural competence.")
# description: Optional[str] = Field(None, description="The description of the behavioural competence.")
class Competencies(BaseModel):
competencies: List[ListItem] = Field(
default_factory=list,
description="A list of competencies and their descriptions."
)

View File

@@ -0,0 +1,147 @@
import asyncio
import json
from os import wait
from typing import Optional, List
from crewai.flow.flow import start, listen, and_
from crewai import Process
from flask import current_app
from gevent import sleep
from pydantic import BaseModel, Field
from common.extensions import cache_manager
from common.models.user import Tenant
from common.utils.business_event_context import current_event
from eveai_chat_workers.outputs.globals.basic_types.list_item import ListItem
from eveai_chat_workers.retrievers.retriever_typing import RetrieverArguments
from eveai_chat_workers.specialists.crewai_base_specialist import CrewAIBaseSpecialistExecutor
from eveai_chat_workers.specialists.specialist_typing import SpecialistResult, SpecialistArguments
from eveai_chat_workers.outputs.traicie.competencies.competencies_v1_1 import Competencies
from eveai_chat_workers.specialists.crewai_base_classes import EveAICrewAICrew, EveAICrewAIFlow, EveAIFlowState
from common.utils.pydantic_utils import flatten_pydantic_model
class SpecialistExecutor(CrewAIBaseSpecialistExecutor):
"""
type: TRAICIE_ROLE_DEFINITION_SPECIALIST
type_version: 1.0
Traicie Role Definition Specialist Executor class
"""
def __init__(self, tenant_id, specialist_id, session_id, task_id, **kwargs):
self.role_definition_crew = None
super().__init__(tenant_id, specialist_id, session_id, task_id)
# Load the Tenant & set language
self.tenant = Tenant.query.get_or_404(tenant_id)
@property
def type(self) -> str:
return "TRAICIE_ROLE_DEFINITION_SPECIALIST"
@property
def type_version(self) -> str:
return "1.1"
def _config_task_agents(self):
self._add_task_agent("traicie_get_competencies_task", "traicie_hr_bp_agent")
def _config_pydantic_outputs(self):
self._add_pydantic_output("traicie_get_competencies_task", Competencies, "competencies")
def _instantiate_specialist(self):
verbose = self.tuning
role_definition_agents = [self.traicie_hr_bp_agent]
role_definition_tasks = [self.traicie_get_competencies_task]
self.role_definition_crew = EveAICrewAICrew(
self,
"Role Definition Crew",
agents=role_definition_agents,
tasks=role_definition_tasks,
verbose=verbose,
)
self.flow = RoleDefinitionFlow(
self,
self.role_definition_crew
)
def execute(self, arguments: SpecialistArguments, formatted_context, citations) -> SpecialistResult:
self.log_tuning("Traicie Role Definition Specialist execution started", {})
flow_inputs = {
"vacancy_text": arguments.vacancy_text,
}
flow_results = self.flow.kickoff(inputs=flow_inputs)
flow_state = self.flow.state
results = RoleDefinitionSpecialistResult.create_for_type(self.type, self.type_version)
if flow_state.competencies:
results.competencies = flow_state.competencies
self.log_tuning(f"Traicie Role Definition Specialist execution ended", {"Results": results.model_dump()})
return results
class RoleDefinitionSpecialistInput(BaseModel):
vacancy_text: Optional[str] = Field(None, alias="vacancy_text")
class RoleDefinitionSpecialistResult(SpecialistResult):
competencies: Optional[List[ListItem]] = None
class RoleDefFlowState(EveAIFlowState):
"""Flow state for Traicie Role Definition specialist that automatically updates from task outputs"""
input: Optional[RoleDefinitionSpecialistInput] = None
competencies: Optional[List[ListItem]] = None
class RoleDefinitionFlow(EveAICrewAIFlow[RoleDefFlowState]):
def __init__(self,
specialist_executor: CrewAIBaseSpecialistExecutor,
role_definitiion_crew: EveAICrewAICrew,
**kwargs):
super().__init__(specialist_executor, "Traicie Role Definition Specialist Flow", **kwargs)
self.specialist_executor = specialist_executor
self.role_definition_crew = role_definitiion_crew
self.exception_raised = False
@start()
def process_inputs(self):
return ""
@listen(process_inputs)
async def execute_role_definition(self):
inputs = self.state.input.model_dump()
try:
current_app.logger.debug("In execute_role_definition")
crew_output = await self.role_definition_crew.kickoff_async(inputs=inputs)
# Unfortunately, crew_output will only contain the output of the latest task.
# As we will only take into account the flow state, we need to ensure both competencies and criteria
# are copies to the flow state.
update = {}
for task in self.role_definition_crew.tasks:
current_app.logger.debug(f"Task {task.name} output:\n{task.output}")
if task.name == "traicie_get_competencies_task":
# update["competencies"] = task.output.pydantic.competencies
self.state.competencies = task.output.pydantic.competencies
# crew_output.pydantic = crew_output.pydantic.model_copy(update=update)
current_app.logger.debug(f"State after execute_role_definition: {self.state}")
current_app.logger.debug(f"State dump after execute_role_definition: {self.state.model_dump()}")
return crew_output
except Exception as e:
current_app.logger.error(f"CREW execute_role_definition Kickoff Error: {str(e)}")
self.exception_raised = True
raise e
async def kickoff_async(self, inputs=None):
current_app.logger.debug(f"Async kickoff {self.name}")
self.state.input = RoleDefinitionSpecialistInput.model_validate(inputs)
result = await super().kickoff_async(inputs)
return self.state