Improvements to Document Interface and correcting embedding workers
This commit is contained in:
@@ -23,6 +23,9 @@ def create_app(config_file=None):
|
||||
|
||||
from . import tasks
|
||||
|
||||
app.logger.info("EveAI Worker Server Started Successfully")
|
||||
app.logger.info("-------------------------------------------------------------------------------------------------")
|
||||
|
||||
return app, celery
|
||||
|
||||
|
||||
|
||||
@@ -11,17 +11,17 @@ from unstructured_client.models import shared
|
||||
from unstructured_client.models.errors import SDKError
|
||||
|
||||
# OpenAI imports
|
||||
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
||||
from langchain_core.prompts import ChatPromptTemplate
|
||||
from langchain.chains.summarize import load_summarize_chain
|
||||
from langchain.text_splitter import CharacterTextSplitter
|
||||
from langchain_core.exceptions import LangChainException
|
||||
|
||||
from common.utils.database import Database
|
||||
from common.models.document import DocumentVersion, EmbeddingMistral, EmbeddingSmallOpenAI
|
||||
from common.models.document import DocumentVersion
|
||||
from common.models.user import Tenant
|
||||
from common.extensions import db
|
||||
from common.utils.celery_utils import current_celery
|
||||
from common.utils.model_utils import select_model_variables
|
||||
|
||||
from bs4 import BeautifulSoup
|
||||
|
||||
@@ -35,59 +35,68 @@ def create_embeddings(tenant_id, document_version_id):
|
||||
|
||||
current_app.logger.info(f'Creating embeddings for tenant {tenant_id} on document version {document_version_id}.')
|
||||
|
||||
# Retrieve Tenant for which we are processing
|
||||
tenant = Tenant.query.get(tenant_id)
|
||||
if tenant is None:
|
||||
current_app.logger.error(f'Cannot create embeddings for tenant {tenant_id}. '
|
||||
f'Tenant not found')
|
||||
create_embeddings.update_state(state=states.FAILURE)
|
||||
raise Ignore()
|
||||
|
||||
# Ensure we are working in the correct database schema
|
||||
Database(tenant_id).switch_schema()
|
||||
|
||||
# Retrieve document version to process
|
||||
document_version = DocumentVersion.query.get(document_version_id)
|
||||
if document_version is None:
|
||||
current_app.logger.error(f'Cannot create embeddings for tenant {tenant_id}. '
|
||||
f'Document version {document_version_id} not found')
|
||||
create_embeddings.update_state(state=states.FAILURE)
|
||||
raise Ignore()
|
||||
|
||||
db.session.add(document_version)
|
||||
|
||||
# start processing
|
||||
document_version.processing = True
|
||||
document_version.processing_started_at = dt.now(tz.utc)
|
||||
try:
|
||||
# Retrieve Tenant for which we are processing
|
||||
tenant = Tenant.query.get(tenant_id)
|
||||
if tenant is None:
|
||||
raise Exception(f'Tenant {tenant_id} not found')
|
||||
|
||||
# Ensure we are working in the correct database schema
|
||||
Database(tenant_id).switch_schema()
|
||||
|
||||
# Select variables to work with depending on tenant and model
|
||||
model_variables = select_model_variables(tenant)
|
||||
|
||||
# Retrieve document version to process
|
||||
document_version = DocumentVersion.query.get(document_version_id)
|
||||
if document_version is None:
|
||||
raise Exception(f'Document version {document_version_id} not found')
|
||||
|
||||
except Exception as e:
|
||||
current_app.logger.error(f'Create Embeddings request received '
|
||||
f'for non existing document version {document_version_id} '
|
||||
f'for tenant {tenant_id}, '
|
||||
f'error: {e}')
|
||||
raise
|
||||
|
||||
try:
|
||||
db.session.add(document_version)
|
||||
|
||||
# start processing
|
||||
document_version.processing = True
|
||||
document_version.processing_started_at = dt.now(tz.utc)
|
||||
|
||||
db.session.commit()
|
||||
except SQLAlchemyError as e:
|
||||
current_app.logger.error(f'Error saving document version {document_version_id} to database '
|
||||
f'for tenant {tenant_id} when starting creating of embeddings. '
|
||||
current_app.logger.error(f'Unable to save Embedding status information '
|
||||
f'in document version {document_version_id} '
|
||||
f'for tenant {tenant_id}')
|
||||
raise
|
||||
|
||||
try:
|
||||
match document_version.file_type:
|
||||
case 'pdf':
|
||||
process_pdf(tenant, model_variables, document_version)
|
||||
case 'html':
|
||||
process_html(tenant, model_variables, document_version)
|
||||
case _:
|
||||
raise Exception(f'No functionality defined for file type {document_version.file_type} '
|
||||
f'for tenant {tenant_id} '
|
||||
f'while creating embeddings for document version {document_version_id}')
|
||||
|
||||
except Exception as e:
|
||||
current_app.logger.error(f'Error creating embeddings for tenant {tenant_id} '
|
||||
f'on document version {document_version_id} '
|
||||
f'error: {e}')
|
||||
document_version.processing = False
|
||||
document_version.processing_finished_at = dt.now(tz.utc)
|
||||
document_version.processing_error = str(e)[:255]
|
||||
db.session.commit()
|
||||
create_embeddings.update_state(state=states.FAILURE)
|
||||
raise Ignore()
|
||||
|
||||
match document_version.file_type:
|
||||
case 'pdf':
|
||||
process_pdf(tenant, document_version)
|
||||
case 'html':
|
||||
process_html(tenant, document_version)
|
||||
case _:
|
||||
current_app.logger.info(f'No functionality defined for file type {document_version.file_type} '
|
||||
f'for tenant {tenant_id} '
|
||||
f'while creating embeddings for document version {document_version_id}')
|
||||
create_embeddings.update_state(state=states.FAILURE)
|
||||
raise Ignore()
|
||||
raise
|
||||
|
||||
|
||||
@current_celery.task(name='ask_eve_ai', queue='llm_interactions')
|
||||
def ask_eve_ai(query):
|
||||
# Interaction logic with LLMs like GPT (Langchain API calls, etc.)
|
||||
pass
|
||||
|
||||
|
||||
def process_pdf(tenant, document_version):
|
||||
def process_pdf(tenant, model_variables, document_version):
|
||||
file_path = os.path.join(current_app.config['UPLOAD_FOLDER'],
|
||||
document_version.file_location,
|
||||
document_version.file_name)
|
||||
@@ -101,15 +110,15 @@ def process_pdf(tenant, document_version):
|
||||
coordinates=True,
|
||||
extract_image_block_types=['Image', 'Table'],
|
||||
chunking_strategy='by_title',
|
||||
combine_under_n_chars=current_app.config.get('MIN_CHUNK_SIZE'),
|
||||
max_characters=current_app.config.get('MAX_CHUNK_SIZE'),
|
||||
combine_under_n_chars=model_variables['min_chunk_size'],
|
||||
max_characters=model_variables['max_chunk_size'],
|
||||
)
|
||||
else:
|
||||
current_app.logger.error(f'The physical file for document version {document_version.id} '
|
||||
f'for tenant {tenant.id} '
|
||||
f'at {file_path} does not exist')
|
||||
create_embeddings.update_state(state=states.FAILURE)
|
||||
raise Ignore()
|
||||
raise
|
||||
|
||||
try:
|
||||
chunks = partition_doc_unstructured(tenant, document_version, req)
|
||||
@@ -118,13 +127,13 @@ def process_pdf(tenant, document_version):
|
||||
f'while processing PDF on document version {document_version.id} '
|
||||
f'error: {e}')
|
||||
create_embeddings.update_state(state=states.FAILURE)
|
||||
raise Ignore()
|
||||
raise
|
||||
|
||||
summary = summarize_chunk(tenant, document_version, chunks[0])
|
||||
summary = summarize_chunk(tenant, model_variables, document_version, chunks[0])
|
||||
doc_lang = document_version.document_language
|
||||
doc_lang.system_context = f'Summary: {summary}\n'
|
||||
enriched_chunks = enrich_chunks(tenant, document_version, chunks)
|
||||
embeddings = embed_chunks(tenant, document_version, enriched_chunks)
|
||||
embeddings = embed_chunks(tenant, model_variables, document_version, enriched_chunks)
|
||||
|
||||
try:
|
||||
db.session.add(doc_lang)
|
||||
@@ -138,13 +147,14 @@ def process_pdf(tenant, document_version):
|
||||
f'on PDF, document version {document_version.id}'
|
||||
f'error: {e}')
|
||||
db.session.rollback()
|
||||
create_embeddings.update_state(state=states.FAILURE)
|
||||
raise
|
||||
|
||||
current_app.logger.info(f'Embeddings created successfully for tenant {tenant.id} '
|
||||
f'on document version {document_version.id} :-)')
|
||||
|
||||
|
||||
def process_html(tenant, document_version):
|
||||
def process_html(tenant, model_variables, document_version):
|
||||
# The tags to be considered can be dependent on the tenant
|
||||
html_tags = tenant.html_tags
|
||||
end_tags = tenant.html_end_tags
|
||||
@@ -163,22 +173,22 @@ def process_html(tenant, document_version):
|
||||
f'for tenant {tenant.id} '
|
||||
f'at {file_path} does not exist')
|
||||
create_embeddings.update_state(state=states.FAILURE)
|
||||
raise Ignore()
|
||||
raise
|
||||
|
||||
extracted_data, title = parse_html(html_content, html_tags, included_elements=included_elements,
|
||||
excluded_elements=excluded_elements)
|
||||
potential_chunks = create_potential_chunks(extracted_data, end_tags)
|
||||
chunks = combine_chunks(potential_chunks,
|
||||
current_app.config.get('MIN_CHUNK_SIZE'),
|
||||
current_app.config.get('MAX_CHUNK_SIZE')
|
||||
model_variables['min_chunk_size'],
|
||||
model_variables['max_chunk_size']
|
||||
)
|
||||
summary = summarize_chunk(tenant, document_version, chunks[0])
|
||||
summary = summarize_chunk(tenant, model_variables, document_version, chunks[0])
|
||||
doc_lang = document_version.document_language
|
||||
doc_lang.system_context = (f'Title: {title}\n'
|
||||
f'Summary: {summary}\n')
|
||||
|
||||
enriched_chunks = enrich_chunks(tenant, document_version, chunks)
|
||||
embeddings = embed_chunks(tenant, document_version, enriched_chunks)
|
||||
embeddings = embed_chunks(tenant, model_variables, document_version, enriched_chunks)
|
||||
|
||||
try:
|
||||
db.session.add(doc_lang)
|
||||
@@ -198,6 +208,8 @@ def process_html(tenant, document_version):
|
||||
|
||||
|
||||
def enrich_chunks(tenant, document_version, chunks):
|
||||
current_app.logger.debug(f'Enriching chunks for tenant {tenant.id} '
|
||||
f'on document version {document_version.id}')
|
||||
doc_lang = document_version.document_language
|
||||
chunk_total_context = (f'Filename: {document_version.file_name}\n'
|
||||
f'{doc_lang.system_context}\n'
|
||||
@@ -209,54 +221,36 @@ def enrich_chunks(tenant, document_version, chunks):
|
||||
enriched_chunk = f'{chunk_total_context}\n{chunk}'
|
||||
enriched_chunks.append(enriched_chunk)
|
||||
|
||||
current_app.logger.debug(f'Finished enriching chunks for tenant {tenant.id} '
|
||||
f'on document version {document_version.id}')
|
||||
|
||||
return enriched_chunks
|
||||
|
||||
|
||||
def summarize_chunk(tenant, document_version, chunk):
|
||||
llm_model = tenant.llm_model
|
||||
llm_provider = llm_model.split('.', 1)[0]
|
||||
llm_model = llm_model.split('.', 1)[1]
|
||||
|
||||
summary_template = ''
|
||||
llm = None
|
||||
match llm_provider:
|
||||
case 'openai':
|
||||
api_key = current_app.config.get('OPENAI_API_KEY')
|
||||
llm = ChatOpenAI(api_key=api_key, temperature=0, model=llm_model)
|
||||
match llm_model:
|
||||
case 'gpt-4-turbo':
|
||||
summary_template = current_app.config.get('GPT4_SUMMARY_TEMPLATE')
|
||||
case 'gpt-3.5-turbo':
|
||||
summary_template = current_app.config.get('GPT3_5_SUMMARY_TEMPLATE')
|
||||
case _:
|
||||
current_app.logger.error(f'Error summarizing initial chunk for tenant {tenant.id} '
|
||||
f'on document version {document_version.id} '
|
||||
f'error: Invalid llm model')
|
||||
create_embeddings.update_state(state=states.FAILURE)
|
||||
raise Ignore()
|
||||
case _:
|
||||
current_app.logger.error(f'Error summarizing initial chunk for tenant {tenant.id} '
|
||||
f'on document version {document_version.id} '
|
||||
f'error: Invalid llm provider')
|
||||
|
||||
prompt = ChatPromptTemplate.from_template(summary_template)
|
||||
def summarize_chunk(tenant, model_variables, document_version, chunk):
|
||||
current_app.logger.debug(f'Summarizing chunk for tenant {tenant.id} '
|
||||
f'on document version {document_version.id}')
|
||||
llm = model_variables['llm']
|
||||
prompt = model_variables['summary_prompt']
|
||||
chain = load_summarize_chain(llm, chain_type='stuff', prompt=prompt)
|
||||
|
||||
doc_creator = CharacterTextSplitter(chunk_size=current_app.config.get('MAX_CHUNK_SIZE') * 2, chunk_overlap=0)
|
||||
doc_creator = CharacterTextSplitter(chunk_size=model_variables['max_chunk_size'] * 2, chunk_overlap=0)
|
||||
text_to_summarize = doc_creator.create_documents(chunk)
|
||||
|
||||
try:
|
||||
summary = chain.run(text_to_summarize)
|
||||
current_app.logger.debug(f'Finished summarizing chunk for tenant {tenant.id} '
|
||||
f'on document version {document_version.id}.')
|
||||
return summary
|
||||
except LangChainException as e:
|
||||
current_app.logger.error(f'Error creating summary for chunk enrichment for tenant {tenant.id} '
|
||||
f'on document version {document_version.id} '
|
||||
f'error: {e}')
|
||||
raise
|
||||
|
||||
return summary
|
||||
|
||||
|
||||
def partition_doc_unstructured(tenant, document_version, unstructured_request):
|
||||
current_app.logger.debug(f'Partitioning document version {document_version.id} for tenant {tenant.id}')
|
||||
# Initiate the connection to unstructured.io
|
||||
url = current_app.config.get('UNSTRUCTURED_FULL_URL')
|
||||
api_key = current_app.config.get('UNSTRUCTURED_API_KEY')
|
||||
@@ -273,6 +267,7 @@ def partition_doc_unstructured(tenant, document_version, unstructured_request):
|
||||
pass
|
||||
case 'Table':
|
||||
chunks.append(el['metadata']['text_as_html'])
|
||||
current_app.logger.debug(f'Finished partioning document version {document_version.id} for tenant {tenant.id}')
|
||||
return chunks
|
||||
except SDKError as e:
|
||||
current_app.logger.error(f'Error creating embeddings for tenant {tenant.id} '
|
||||
@@ -281,33 +276,15 @@ def partition_doc_unstructured(tenant, document_version, unstructured_request):
|
||||
raise
|
||||
|
||||
|
||||
def embed_chunks(tenant, document_version, chunks):
|
||||
embedding_provider = tenant.embedding_model.rsplit('.', 1)[0]
|
||||
embedding_model = tenant.embedding_model.rsplit('.', 1)[1]
|
||||
def embed_chunks(tenant, model_variables, document_version, chunks):
|
||||
current_app.logger.debug(f'Embedding chunks for tenant {tenant.id} '
|
||||
f'on document version {document_version.id}')
|
||||
embedding_model = model_variables['embedding_model']
|
||||
|
||||
match embedding_provider:
|
||||
case 'openai':
|
||||
match embedding_model:
|
||||
case 'text-embedding-3-small':
|
||||
return embed_chunks_for_text_embedding_3_small(tenant, document_version, chunks)
|
||||
case _:
|
||||
current_app.logger.error(f'Error creating embeddings for tenant {tenant.id} '
|
||||
f'on document version {document_version.id} '
|
||||
f'error: Invalid embedding model')
|
||||
create_embeddings.update_state(state=states.FAILURE)
|
||||
raise Ignore()
|
||||
case _:
|
||||
current_app.logger.error(f'Error creating embeddings for tenant {tenant.id} '
|
||||
f'on document version {document_version.id} '
|
||||
f'error: Invalid embedding provider')
|
||||
|
||||
|
||||
def embed_chunks_for_text_embedding_3_small(tenant, document_version, chunks):
|
||||
# Create embedding vectors using OpenAI
|
||||
api_key = current_app.config.get('OPENAI_API_KEY')
|
||||
embeddings_model = OpenAIEmbeddings(api_key=api_key, model='text-embedding-3-small')
|
||||
try:
|
||||
embeddings = embeddings_model.embed_documents(chunks)
|
||||
embeddings = embedding_model.embed_documents(chunks)
|
||||
current_app.logger.debug(f'Finished embedding chunks for tenant {tenant.id} '
|
||||
f'on document version {document_version.id}')
|
||||
except LangChainException as e:
|
||||
current_app.logger.error(f'Error creating embeddings for tenant {tenant.id} '
|
||||
f'on document version {document_version.id} while calling OpenAI API'
|
||||
@@ -317,7 +294,7 @@ def embed_chunks_for_text_embedding_3_small(tenant, document_version, chunks):
|
||||
# Add embeddings to the database
|
||||
new_embeddings = []
|
||||
for chunk, embedding in zip(chunks, embeddings):
|
||||
new_embedding = EmbeddingSmallOpenAI()
|
||||
new_embedding = model_variables['embedding_db_model']()
|
||||
new_embedding.document_version = document_version
|
||||
new_embedding.active = True
|
||||
new_embedding.chunk = chunk
|
||||
@@ -327,10 +304,6 @@ def embed_chunks_for_text_embedding_3_small(tenant, document_version, chunks):
|
||||
return new_embeddings
|
||||
|
||||
|
||||
def embed_chunks_for_mistral_embed(tenant_id, document_version, chunks):
|
||||
pass
|
||||
|
||||
|
||||
def parse_html(html_content, tags, included_elements=None, excluded_elements=None):
|
||||
soup = BeautifulSoup(html_content, 'html.parser')
|
||||
extracted_content = []
|
||||
|
||||
Reference in New Issue
Block a user