- smaller changes to eveai.css to ensure background of selected buttons do not get all white and to ensure that the background of fiels in editable cells do not become white in a tabulator.

- The Role Definition Specialist now creates a new selection specialist upon completion
This commit is contained in:
Josako
2025-06-01 10:09:34 +02:00
parent 578981c745
commit 81e754317a
6 changed files with 460 additions and 9 deletions

View File

@@ -1,7 +1,15 @@
import uuid import uuid
from typing import Dict, Any, Tuple from datetime import datetime as dt, timezone as tz
from typing import Dict, Any, Tuple, Optional
from flask import current_app
from sqlalchemy.exc import SQLAlchemyError
from common.extensions import db, cache_manager
from common.models.interaction import (
Specialist, EveAIAgent, EveAITask, EveAITool
)
from common.utils.celery_utils import current_celery from common.utils.celery_utils import current_celery
from common.utils.model_logging_utils import set_logging_information, update_logging_information
class SpecialistServices: class SpecialistServices:
@@ -27,4 +35,188 @@ class SpecialistServices:
'status': 'queued', 'status': 'queued',
} }
@staticmethod
def initialize_specialist(specialist_id: int, specialist_type: str, specialist_version: str):
"""
Initialize an agentic specialist by creating all its components based on configuration.
Args:
specialist_id: ID of the specialist to initialize
specialist_type: Type of the specialist
specialist_version: Version of the specialist type to use
Raises:
ValueError: If specialist not found or invalid configuration
SQLAlchemyError: If database operations fail
"""
config = cache_manager.specialists_config_cache.get_config(specialist_type, specialist_version)
if not config:
raise ValueError(f"No configuration found for {specialist_type} version {specialist_version}")
if config['framework'] == 'langchain':
pass # Langchain does not require additional items to be initialized. All configuration is in the specialist.
specialist = Specialist.query.get(specialist_id)
if not specialist:
raise ValueError(f"Specialist with ID {specialist_id} not found")
if config['framework'] == 'crewai':
SpecialistServices.initialize_crewai_specialist(specialist, config)
@staticmethod
def initialize_crewai_specialist(specialist: Specialist, config: Dict[str, Any]):
timestamp = dt.now(tz=tz.utc)
try:
# Initialize agents
if 'agents' in config:
for agent_config in config['agents']:
SpecialistServices._create_agent(
specialist_id=specialist.id,
agent_type=agent_config['type'],
agent_version=agent_config['version'],
name=agent_config.get('name'),
description=agent_config.get('description'),
timestamp=timestamp
)
# Initialize tasks
if 'tasks' in config:
for task_config in config['tasks']:
SpecialistServices._create_task(
specialist_id=specialist.id,
task_type=task_config['type'],
task_version=task_config['version'],
name=task_config.get('name'),
description=task_config.get('description'),
timestamp=timestamp
)
# Initialize tools
if 'tools' in config:
for tool_config in config['tools']:
SpecialistServices._create_tool(
specialist_id=specialist.id,
tool_type=tool_config['type'],
tool_version=tool_config['version'],
name=tool_config.get('name'),
description=tool_config.get('description'),
timestamp=timestamp
)
db.session.commit()
current_app.logger.info(f"Successfully initialized crewai specialist {specialist.id}")
except SQLAlchemyError as e:
db.session.rollback()
current_app.logger.error(f"Database error initializing crewai specialist {specialist.id}: {str(e)}")
raise
except Exception as e:
db.session.rollback()
current_app.logger.error(f"Error initializing crewai specialist {specialist.id}: {str(e)}")
raise
@staticmethod
def _create_agent(
specialist_id: int,
agent_type: str,
agent_version: str,
name: Optional[str] = None,
description: Optional[str] = None,
timestamp: Optional[dt] = None
) -> EveAIAgent:
"""Create an agent with the given configuration."""
if timestamp is None:
timestamp = dt.now(tz=tz.utc)
# Get agent configuration from cache
agent_config = cache_manager.agents_config_cache.get_config(agent_type, agent_version)
agent = EveAIAgent(
specialist_id=specialist_id,
name=name or agent_config.get('name', agent_type),
description=description or agent_config.get('metadata').get('description', ''),
type=agent_type,
type_version=agent_version,
role=None,
goal=None,
backstory=None,
tuning=False,
configuration=None,
arguments=None
)
set_logging_information(agent, timestamp)
db.session.add(agent)
current_app.logger.info(f"Created agent {agent.id} of type {agent_type}")
return agent
@staticmethod
def _create_task(
specialist_id: int,
task_type: str,
task_version: str,
name: Optional[str] = None,
description: Optional[str] = None,
timestamp: Optional[dt] = None
) -> EveAITask:
"""Create a task with the given configuration."""
if timestamp is None:
timestamp = dt.now(tz=tz.utc)
# Get task configuration from cache
task_config = cache_manager.tasks_config_cache.get_config(task_type, task_version)
task = EveAITask(
specialist_id=specialist_id,
name=name or task_config.get('name', task_type),
description=description or task_config.get('metadata').get('description', ''),
type=task_type,
type_version=task_version,
task_description=None,
expected_output=None,
tuning=False,
configuration=None,
arguments=None,
context=None,
asynchronous=False,
)
set_logging_information(task, timestamp)
db.session.add(task)
current_app.logger.info(f"Created task {task.id} of type {task_type}")
return task
@staticmethod
def _create_tool(
specialist_id: int,
tool_type: str,
tool_version: str,
name: Optional[str] = None,
description: Optional[str] = None,
timestamp: Optional[dt] = None
) -> EveAITool:
"""Create a tool with the given configuration."""
if timestamp is None:
timestamp = dt.now(tz=tz.utc)
# Get tool configuration from cache
tool_config = cache_manager.tools_config_cache.get_config(tool_type, tool_version)
tool = EveAITool(
specialist_id=specialist_id,
name=name or tool_config.get('name', tool_type),
description=description or tool_config.get('metadata').get('description', ''),
type=tool_type,
type_version=tool_version,
tuning=False,
configuration=None,
arguments=None,
)
set_logging_information(tool, timestamp)
db.session.add(tool)
current_app.logger.info(f"Created tool {tool.id} of type {tool_type}")
return tool

View File

@@ -0,0 +1,44 @@
version: "1.1.0"
name: "Traicie Role Definition Specialist"
framework: "crewai"
partner: "traicie"
chat: false
configuration: {}
arguments:
role_name:
name: "Role Name"
description: "The name of the role that is being processed. Will be used to create a selection specialist"
type: "str"
required: true
specialist_name:
name: "Specialist Name"
description: "The name the specialist will be called upon"
type: str
required: true
role_reference:
name: "Role Reference"
description: "A customer reference to the role"
type: "str"
required: false
vacancy_text:
name: "vacancy_text"
type: "text"
description: "The Vacancy Text"
required: true
results:
competencies:
name: "competencies"
type: "List[str, str]"
description: "List of vacancy competencies and their descriptions"
required: false
agents:
- type: "TRAICIE_HR_BP_AGENT"
version: "1.0"
tasks:
- type: "TRAICIE_GET_COMPETENCIES_TASK"
version: "1.1"
metadata:
author: "Josako"
date_added: "2025-05-27"
changes: "Updated for unified competencies and ko criteria"
description: "Assistant to create a new Vacancy based on Vacancy Text"

View File

@@ -5,12 +5,17 @@ partner: "traicie"
chat: false chat: false
configuration: configuration:
name: name:
name: "name" name: "Name"
description: "The name the specialist is called upon." description: "The name the specialist is called upon."
type: "str" type: "str"
required: true required: true
role_reference:
name: "Role Reference"
description: "A customer reference to the role"
type: "str"
required: false
competencies: competencies:
name: "competencies" name: "Competencies"
description: "An ordered list of competencies." description: "An ordered list of competencies."
type: "ordered_list" type: "ordered_list"
list_type: "competency_details" list_type: "competency_details"

View File

@@ -24,9 +24,6 @@ from common.utils.model_logging_utils import set_logging_information, update_log
from common.utils.middleware import mw_before_request from common.utils.middleware import mw_before_request
from common.utils.nginx_utils import prefixed_url_for from common.utils.nginx_utils import prefixed_url_for
from common.utils.view_assistants import form_validation_failed, prepare_table_for_macro from common.utils.view_assistants import form_validation_failed, prepare_table_for_macro
from common.utils.specialist_utils import initialize_specialist
from config.type_defs.specialist_types import SPECIALIST_TYPES
from .interaction_forms import (SpecialistForm, EditSpecialistForm, EditEveAIAgentForm, EditEveAITaskForm, from .interaction_forms import (SpecialistForm, EditSpecialistForm, EditEveAIAgentForm, EditEveAITaskForm,
EditEveAIToolForm, AddEveAIAssetForm, EditEveAIAssetVersionForm, ExecuteSpecialistForm) EditEveAIToolForm, AddEveAIAssetForm, EditEveAIAssetVersionForm, ExecuteSpecialistForm)
@@ -184,7 +181,7 @@ def specialist():
current_app.logger.info(f'Specialist {new_specialist.name} successfully added for tenant {tenant_id}!') current_app.logger.info(f'Specialist {new_specialist.name} successfully added for tenant {tenant_id}!')
# Initialize the newly create specialist # Initialize the newly create specialist
initialize_specialist(new_specialist.id, new_specialist.type, new_specialist.type_version) SpecialistServices.initialize_specialist(new_specialist.id, new_specialist.type, new_specialist.type_version)
return redirect(prefixed_url_for('interaction_bp.edit_specialist', specialist_id=new_specialist.id)) return redirect(prefixed_url_for('interaction_bp.edit_specialist', specialist_id=new_specialist.id))

View File

@@ -0,0 +1,197 @@
import asyncio
import json
from os import wait
from typing import Optional, List
from crewai.flow.flow import start, listen, and_
from flask import current_app
from pydantic import BaseModel, Field
from sqlalchemy.exc import SQLAlchemyError
from common.extensions import db
from common.models.user import Tenant
from common.models.interaction import Specialist
from eveai_chat_workers.outputs.globals.basic_types.list_item import ListItem
from eveai_chat_workers.specialists.crewai_base_specialist import CrewAIBaseSpecialistExecutor
from eveai_chat_workers.specialists.specialist_typing import SpecialistResult, SpecialistArguments
from eveai_chat_workers.outputs.traicie.competencies.competencies_v1_1 import Competencies
from eveai_chat_workers.specialists.crewai_base_classes import EveAICrewAICrew, EveAICrewAIFlow, EveAIFlowState
from common.services.interaction.specialist_services import SpecialistServices
class SpecialistExecutor(CrewAIBaseSpecialistExecutor):
"""
type: TRAICIE_ROLE_DEFINITION_SPECIALIST
type_version: 1.0
Traicie Role Definition Specialist Executor class
"""
def __init__(self, tenant_id, specialist_id, session_id, task_id, **kwargs):
self.role_definition_crew = None
super().__init__(tenant_id, specialist_id, session_id, task_id)
# Load the Tenant & set language
self.tenant = Tenant.query.get_or_404(tenant_id)
@property
def type(self) -> str:
return "TRAICIE_ROLE_DEFINITION_SPECIALIST"
@property
def type_version(self) -> str:
return "1.1"
def _config_task_agents(self):
self._add_task_agent("traicie_get_competencies_task", "traicie_hr_bp_agent")
def _config_pydantic_outputs(self):
self._add_pydantic_output("traicie_get_competencies_task", Competencies, "competencies")
def _instantiate_specialist(self):
verbose = self.tuning
role_definition_agents = [self.traicie_hr_bp_agent]
role_definition_tasks = [self.traicie_get_competencies_task]
self.role_definition_crew = EveAICrewAICrew(
self,
"Role Definition Crew",
agents=role_definition_agents,
tasks=role_definition_tasks,
verbose=verbose,
)
self.flow = RoleDefinitionFlow(
self,
self.role_definition_crew
)
def execute(self, arguments: SpecialistArguments, formatted_context, citations) -> SpecialistResult:
self.log_tuning("Traicie Role Definition Specialist execution started", {})
flow_inputs = {
"vacancy_text": arguments.vacancy_text,
"role_name": arguments.role_name,
'role_reference': arguments.role_reference,
}
flow_results = self.flow.kickoff(inputs=flow_inputs)
flow_state = self.flow.state
results = RoleDefinitionSpecialistResult.create_for_type(self.type, self.type_version)
if flow_state.competencies:
results.competencies = flow_state.competencies
self.create_selection_specialist(arguments, flow_state.competencies)
self.log_tuning(f"Traicie Role Definition Specialist execution ended", {"Results": results.model_dump()})
return results
def create_selection_specialist(self, arguments: SpecialistArguments, competencies: List[ListItem]):
"""This method creates a new TRAICIE_SELECTION_SPECIALIST specialist with the given competencies."""
current_app.logger.info(f"Creating selection with arguments: {arguments.model_dump()}")
selection_comptencies = []
for competency in competencies:
selection_competency = {
"title": competency.title,
"description": competency.description,
"assess": True,
"is_knockout": False,
}
selection_comptencies.append(selection_competency)
selection_config = {
"name": arguments.specialist_name,
"competencies": selection_comptencies,
"tone_of_voice": "Professional & Neutral",
"language_level": "Standard",
"role_reference": arguments.role_reference,
}
name = arguments.role_name
if len(name) > 50:
name = name[:47] + "..."
new_specialist = Specialist(
name=name,
description=f"Specialist for {arguments.role_name} role",
type="TRAICIE_SELECTION_SPECIALIST",
type_version="1.0",
tuning=False,
configuration=selection_config,
)
try:
db.session.add(new_specialist)
db.session.commit()
except SQLAlchemyError as e:
db.session.rollback()
current_app.logger.error(f"Error creating selection specialist: {str(e)}")
raise e
SpecialistServices.initialize_specialist(new_specialist.id, "TRAICIE_SELECTION_SPECIALIST", "1.0")
class RoleDefinitionSpecialistInput(BaseModel):
role_name: str = Field(..., alias="role_name")
role_reference: Optional[str] = Field(..., alias="role_reference")
vacancy_text: Optional[str] = Field(None, alias="vacancy_text")
class RoleDefinitionSpecialistResult(SpecialistResult):
competencies: Optional[List[ListItem]] = None
class RoleDefFlowState(EveAIFlowState):
"""Flow state for Traicie Role Definition specialist that automatically updates from task outputs"""
input: Optional[RoleDefinitionSpecialistInput] = None
competencies: Optional[List[ListItem]] = None
class RoleDefinitionFlow(EveAICrewAIFlow[RoleDefFlowState]):
def __init__(self,
specialist_executor: CrewAIBaseSpecialistExecutor,
role_definitiion_crew: EveAICrewAICrew,
**kwargs):
super().__init__(specialist_executor, "Traicie Role Definition Specialist Flow", **kwargs)
self.specialist_executor = specialist_executor
self.role_definition_crew = role_definitiion_crew
self.exception_raised = False
@start()
def process_inputs(self):
return ""
@listen(process_inputs)
async def execute_role_definition (self):
inputs = self.state.input.model_dump()
try:
current_app.logger.debug("In execute_role_definition")
crew_output = await self.role_definition_crew.kickoff_async(inputs=inputs)
# Unfortunately, crew_output will only contain the output of the latest task.
# As we will only take into account the flow state, we need to ensure both competencies and criteria
# are copies to the flow state.
update = {}
for task in self.role_definition_crew.tasks:
current_app.logger.debug(f"Task {task.name} output:\n{task.output}")
if task.name == "traicie_get_competencies_task":
# update["competencies"] = task.output.pydantic.competencies
self.state.competencies = task.output.pydantic.competencies
# crew_output.pydantic = crew_output.pydantic.model_copy(update=update)
current_app.logger.debug(f"State after execute_role_definition: {self.state}")
current_app.logger.debug(f"State dump after execute_role_definition: {self.state.model_dump()}")
return crew_output
except Exception as e:
current_app.logger.error(f"CREW execute_role_definition Kickoff Error: {str(e)}")
self.exception_raised = True
raise e
async def kickoff_async(self, inputs=None):
current_app.logger.debug(f"Async kickoff {self.name}")
current_app.logger.debug(f"Inputs: {inputs}")
self.state.input = RoleDefinitionSpecialistInput.model_validate(inputs)
current_app.logger.debug(f"State: {self.state}")
result = await super().kickoff_async(inputs)
return self.state

View File

@@ -398,8 +398,8 @@ input[type="radio"] {
} }
.btn-danger:hover { .btn-danger:hover {
background-color: darken(var(--bs-danger), 10%) !important; /* Darken the background on hover */ background-color: var(--bs-secondary) !important;
border-color: darken(var(--bs-danger), 10%) !important; /* Darken the border on hover */ border-color: var(--bs-secondary) !important;
color: var(--bs-white) !important; /* Ensure the text remains white and readable */ color: var(--bs-white) !important; /* Ensure the text remains white and readable */
} }
@@ -1178,3 +1178,19 @@ select.select2[multiple] {
box-shadow: 0 4px 8px rgba(118, 89, 154, 0.2); /* Consistent shadow */ box-shadow: 0 4px 8px rgba(118, 89, 154, 0.2); /* Consistent shadow */
} }
/* Tekst in invoervelden zwart maken voor betere leesbaarheid */
.ordered-list-editor .tabulator-row:hover .tabulator-cell input,
.ordered-list-editor .tabulator-row:hover .tabulator-cell select,
.ordered-list-editor .tabulator-row:hover .tabulator-cell textarea,
.ordered-list-editor .tabulator-row:hover .tabulator-cell .tabulator-editor,
.ordered-list-editor .tabulator-row.tabulator-selected .tabulator-cell input,
.ordered-list-editor .tabulator-row.tabulator-selected .tabulator-cell select,
.ordered-list-editor .tabulator-row.tabulator-selected .tabulator-cell textarea,
.ordered-list-editor .tabulator-row.tabulator-selected .tabulator-cell .tabulator-editor {
color: #000000 !important; /* Zwarte tekst op witte achtergrond */
background-color: #ffffff !important; /* Witte achtergrond verzekeren */
border: 1px solid var(--bs-primary) !important; /* Duidelijke rand toevoegen */
}