Chat client changes

- Form values shown correct in MessageHistory of Chat client
- Improements to CSS
- Move css en js to assets directory
- Introduce better Personal Contact Form & Professional Contact Form
- Start working on actual Selection Specialist
This commit is contained in:
Josako
2025-06-15 05:25:00 +02:00
parent 3c7460f741
commit 82e25b356c
27 changed files with 1077 additions and 161 deletions

View File

@@ -0,0 +1,254 @@
import asyncio
import json
from os import wait
from typing import Optional, List, Dict, Any
from datetime import date
from time import sleep
from crewai.flow.flow import start, listen, and_
from flask import current_app
from pydantic import BaseModel, Field, EmailStr
from sqlalchemy.exc import SQLAlchemyError
from common.extensions import db
from common.models.user import Tenant
from common.models.interaction import Specialist
from eveai_chat_workers.outputs.globals.basic_types.list_item import ListItem
from eveai_chat_workers.specialists.crewai_base_specialist import CrewAIBaseSpecialistExecutor
from eveai_chat_workers.specialists.specialist_typing import SpecialistResult, SpecialistArguments
from eveai_chat_workers.outputs.traicie.competencies.competencies_v1_1 import Competencies
from eveai_chat_workers.specialists.crewai_base_classes import EveAICrewAICrew, EveAICrewAIFlow, EveAIFlowState
from common.services.interaction.specialist_services import SpecialistServices
from common.extensions import cache_manager
class SpecialistExecutor(CrewAIBaseSpecialistExecutor):
"""
type: TRAICIE_SELECTION_SPECIALIST
type_version: 1.1
Traicie Selection Specialist Executor class
"""
def __init__(self, tenant_id, specialist_id, session_id, task_id, **kwargs):
self.role_definition_crew = None
super().__init__(tenant_id, specialist_id, session_id, task_id)
# Load the Tenant & set language
self.tenant = Tenant.query.get_or_404(tenant_id)
@property
def type(self) -> str:
return "TRAICIE_SELECTION_SPECIALIST"
@property
def type_version(self) -> str:
return "1.1"
def _config_task_agents(self):
self._add_task_agent("traicie_get_competencies_task", "traicie_hr_bp_agent")
def _config_pydantic_outputs(self):
self._add_pydantic_output("traicie_get_competencies_task", Competencies, "competencies")
def _instantiate_specialist(self):
verbose = self.tuning
role_definition_agents = [self.traicie_hr_bp_agent]
role_definition_tasks = [self.traicie_get_competencies_task]
self.role_definition_crew = EveAICrewAICrew(
self,
"Role Definition Crew",
agents=role_definition_agents,
tasks=role_definition_tasks,
verbose=verbose,
)
self.flow = RoleDefinitionFlow(
self,
self.role_definition_crew
)
def execute(self, arguments: SpecialistArguments, formatted_context, citations) -> SpecialistResult:
self.log_tuning("Traicie Selection Specialist execution started", {})
# flow_inputs = {
# "vacancy_text": arguments.vacancy_text,
# "role_name": arguments.role_name,
# 'role_reference': arguments.role_reference,
# }
#
# flow_results = self.flow.kickoff(inputs=flow_inputs)
#
# flow_state = self.flow.state
#
# results = RoleDefinitionSpecialistResult.create_for_type(self.type, self.type_version)
# if flow_state.competencies:
# results.competencies = flow_state.competencies
# self.create_selection_specialist(arguments, flow_state.competencies)
for i in range(3):
sleep(1)
self.ept.send_update(self.task_id, "Traicie Selection Specialist Processing", {"name": f"Processing Iteration {i}"})
# flow_results = asyncio.run(self.flow.kickoff_async(inputs=arguments.model_dump()))
# flow_state = self.flow.state
# results = RoleDefinitionSpecialistResult.create_for_type(self.type, self.type_version)
contact_form = cache_manager.specialist_forms_config_cache.get_config("PERSONAL_CONTACT_FORM", "1.0")
current_app.logger.debug(f"Contact form: {contact_form}")
results = SpecialistResult.create_for_type(self.type, self.type_version,
answer=f"Antwoord op uw vraag: {arguments.question}",
form_request=contact_form)
self.log_tuning(f"Traicie Selection Specialist execution ended", {"Results": results.model_dump()})
return results
def create_selection_specialist(self, arguments: SpecialistArguments, competencies: List[ListItem]):
"""This method creates a new TRAICIE_SELECTION_SPECIALIST specialist with the given competencies."""
current_app.logger.info(f"Creating selection with arguments: {arguments.model_dump()}")
selection_comptencies = []
for competency in competencies:
selection_competency = {
"title": competency.title,
"description": competency.description,
"assess": True,
"is_knockout": False,
}
selection_comptencies.append(selection_competency)
selection_config = {
"name": arguments.specialist_name,
"competencies": selection_comptencies,
"tone_of_voice": "Professional & Neutral",
"language_level": "Standard",
"role_reference": arguments.role_reference,
}
name = arguments.role_name
if len(name) > 50:
name = name[:47] + "..."
new_specialist = Specialist(
name=name,
description=f"Specialist for {arguments.role_name} role",
type="TRAICIE_SELECTION_SPECIALIST",
type_version="1.0",
tuning=False,
configuration=selection_config,
)
try:
db.session.add(new_specialist)
db.session.commit()
except SQLAlchemyError as e:
db.session.rollback()
current_app.logger.error(f"Error creating selection specialist: {str(e)}")
raise e
SpecialistServices.initialize_specialist(new_specialist.id, self.type, self.type_version)
class SelectionSpecialistInput(BaseModel):
region: str = Field(..., alias="region")
working_schedule: Optional[str] = Field(..., alias="working_schedule")
start_date: Optional[date] = Field(None, alias="vacancy_text")
language: Optional[str] = Field(None, alias="language")
interaction_mode: Optional[str] = Field(None, alias="interaction_mode")
question: Optional[str] = Field(None, alias="question")
field_values: Optional[Dict[str, Any]] = Field(None, alias="field_values")
class SelectionSpecialistKOCriteriumScore(BaseModel):
criterium: Optional[str] = Field(None, alias="criterium")
answer: Optional[str] = Field(None, alias="answer")
score: Optional[int] = Field(None, alias="score")
class SelectionSpecialistCompetencyScore(BaseModel):
competency: Optional[str] = Field(None, alias="competency")
answer: Optional[str] = Field(None, alias="answer")
score: Optional[int] = Field(None, alias="score")
class PersonalContactData(BaseModel):
name: str = Field(..., description="Your name", alias="name")
email: EmailStr = Field(..., description="Your Name", alias="email")
phone: str = Field(..., description="Your Phone Number", alias="phone")
address: Optional[str] = Field(None, description="Your Address", alias="address")
zip: Optional[str] = Field(None, description="Postal Code", alias="zip")
city: Optional[str] = Field(None, description="City", alias="city")
country: Optional[str] = Field(None, description="Country", alias="country")
consent: bool = Field(..., description="Consent", alias="consent")
class SelectionSpecialistResult(SpecialistResult):
ko_criteria_scores: Optional[List[SelectionSpecialistKOCriteriumScore]] = Field(
None, alias="ko_criteria_scores"
)
competency_scores: Optional[List[SelectionSpecialistCompetencyScore]] = Field(
None, alias="competency_scores"
)
personal_contact_data: Optional[PersonalContactData] = Field(
None, alias="personal_contact_data"
)
class SelectionSpecialistFlowState(EveAIFlowState):
"""Flow state for Traicie Role Definition specialist that automatically updates from task outputs"""
input: Optional[SelectionSpecialistInput] = None
ko_criteria_scores: Optional[List[SelectionSpecialistKOCriteriumScore]] = Field(
None, alias="ko_criteria_scores"
)
competency_scores: Optional[List[SelectionSpecialistCompetencyScore]] = Field(
None, alias="competency_scores"
)
personal_contact_data: Optional[PersonalContactData] = Field(
None, alias="personal_contact_data"
)
phase: Optional[str] = Field(None, alias="phase")
interaction_mode: Optional[str] = Field(None, alias="mode")
class RoleDefinitionFlow(EveAICrewAIFlow[SelectionSpecialistFlowState]):
def __init__(self,
specialist_executor: CrewAIBaseSpecialistExecutor,
role_definition_crew: EveAICrewAICrew,
**kwargs):
super().__init__(specialist_executor, "Traicie Role Definition Specialist Flow", **kwargs)
self.specialist_executor = specialist_executor
self.role_definition_crew = role_definition_crew
self.exception_raised = False
@start()
def process_inputs(self):
return ""
@listen(process_inputs)
async def execute_role_definition (self):
inputs = self.state.input.model_dump()
try:
current_app.logger.debug("In execute_role_definition")
crew_output = await self.role_definition_crew.kickoff_async(inputs=inputs)
# Unfortunately, crew_output will only contain the output of the latest task.
# As we will only take into account the flow state, we need to ensure both competencies and criteria
# are copies to the flow state.
update = {}
for task in self.role_definition_crew.tasks:
current_app.logger.debug(f"Task {task.name} output:\n{task.output}")
if task.name == "traicie_get_competencies_task":
# update["competencies"] = task.output.pydantic.competencies
self.state.competencies = task.output.pydantic.competencies
# crew_output.pydantic = crew_output.pydantic.model_copy(update=update)
current_app.logger.debug(f"State after execute_role_definition: {self.state}")
current_app.logger.debug(f"State dump after execute_role_definition: {self.state.model_dump()}")
return crew_output
except Exception as e:
current_app.logger.error(f"CREW execute_role_definition Kickoff Error: {str(e)}")
self.exception_raised = True
raise e
async def kickoff_async(self, inputs=None):
current_app.logger.debug(f"Async kickoff {self.name}")
current_app.logger.debug(f"Inputs: {inputs}")
self.state.input = RoleDefinitionSpecialistInput.model_validate(inputs)
current_app.logger.debug(f"State: {self.state}")
result = await super().kickoff_async(inputs)
return self.state