- Improvements on document uploads (accept other files than html-files when entering a URL)

- Introduction of API-functionality (to be continued). Deduplication of document and url uploads between views and api.
- Improvements on document processing - introduction of processor classes to streamline document inputs
- Removed pure Youtube functionality, as Youtube retrieval of documents continuously changes. But added upload of srt, mp3, ogg and mp4
This commit is contained in:
Josako
2024-09-02 12:37:44 +02:00
parent a158655247
commit 914c265afe
21 changed files with 1425 additions and 852 deletions

View File

@@ -0,0 +1,187 @@
import io
import os
from pydub import AudioSegment
import tempfile
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from common.extensions import minio_client
from common.utils.model_utils import create_language_template
from .processor import Processor
import subprocess
class AudioProcessor(Processor):
def __init__(self, tenant, model_variables, document_version):
super().__init__(tenant, model_variables, document_version)
self.transcription_client = model_variables['transcription_client']
self.transcription_model = model_variables['transcription_model']
self.ffmpeg_path = 'ffmpeg'
def process(self):
self._log("Starting Audio processing")
try:
file_data = minio_client.download_document_file(
self.tenant.id,
self.document_version.doc_id,
self.document_version.language,
self.document_version.id,
self.document_version.file_name
)
compressed_audio = self._compress_audio(file_data)
transcription = self._transcribe_audio(compressed_audio)
markdown, title = self._generate_markdown_from_transcription(transcription)
self._save_markdown(markdown)
self._log("Finished processing Audio")
return markdown, title
except Exception as e:
self._log(f"Error processing Audio: {str(e)}", level='error')
raise
def _compress_audio(self, audio_data):
self._log("Compressing audio")
with tempfile.NamedTemporaryFile(delete=False, suffix=f'.{self.document_version.file_type}') as temp_input:
temp_input.write(audio_data)
temp_input.flush()
# Use a unique filename for the output to avoid conflicts
output_filename = f'compressed_{os.urandom(8).hex()}.mp3'
output_path = os.path.join(tempfile.gettempdir(), output_filename)
try:
result = subprocess.run(
[self.ffmpeg_path, '-y', '-i', temp_input.name, '-b:a', '64k', '-f', 'mp3', output_path],
capture_output=True,
text=True,
check=True
)
with open(output_path, 'rb') as f:
compressed_data = f.read()
# Save compressed audio to MinIO
compressed_filename = f"{self.document_version.id}_compressed.mp3"
minio_client.upload_document_file(
self.tenant.id,
self.document_version.doc_id,
self.document_version.language,
self.document_version.id,
compressed_filename,
compressed_data
)
self._log(f"Saved compressed audio to MinIO: {compressed_filename}")
return compressed_data
except subprocess.CalledProcessError as e:
error_message = f"Compression failed: {e.stderr}"
self._log(error_message, level='error')
raise Exception(error_message)
finally:
# Clean up temporary files
os.unlink(temp_input.name)
if os.path.exists(output_path):
os.unlink(output_path)
def _transcribe_audio(self, audio_data):
self._log("Starting audio transcription")
audio = AudioSegment.from_file(io.BytesIO(audio_data), format="mp3")
segment_length = 10 * 60 * 1000 # 10 minutes in milliseconds
transcriptions = []
for i, chunk in enumerate(audio[::segment_length]):
self._log(f'Processing chunk {i + 1} of {len(audio) // segment_length + 1}')
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_audio:
chunk.export(temp_audio.name, format="mp3")
temp_audio.flush()
try:
file_size = os.path.getsize(temp_audio.name)
self._log(f"Temporary audio file size: {file_size} bytes")
with open(temp_audio.name, 'rb') as audio_file:
file_start = audio_file.read(100)
self._log(f"First 100 bytes of audio file: {file_start}")
audio_file.seek(0) # Reset file pointer to the beginning
self._log("Calling transcription API")
transcription = self.transcription_client.audio.transcriptions.create(
file=audio_file,
model=self.transcription_model,
language=self.document_version.language,
response_format='verbose_json',
)
self._log("Transcription API call completed")
if transcription:
# Handle the transcription result based on its type
if isinstance(transcription, str):
self._log(f"Transcription result (string): {transcription[:100]}...")
transcriptions.append(transcription)
elif hasattr(transcription, 'text'):
self._log(
f"Transcription result (object with 'text' attribute): {transcription.text[:100]}...")
transcriptions.append(transcription.text)
else:
self._log(f"Transcription result (unknown type): {str(transcription)[:100]}...")
transcriptions.append(str(transcription))
else:
self._log("Warning: Received empty transcription", level='warning')
except Exception as e:
self._log(f"Error during transcription: {str(e)}", level='error')
finally:
os.unlink(temp_audio.name)
full_transcription = " ".join(filter(None, transcriptions))
if not full_transcription:
self._log("Warning: No transcription was generated", level='warning')
full_transcription = "No transcription available."
# Save transcription to MinIO
transcription_filename = f"{self.document_version.id}_transcription.txt"
minio_client.upload_document_file(
self.tenant.id,
self.document_version.doc_id,
self.document_version.language,
self.document_version.id,
transcription_filename,
full_transcription.encode('utf-8')
)
self._log(f"Saved transcription to MinIO: {transcription_filename}")
return full_transcription
def _generate_markdown_from_transcription(self, transcription):
self._log("Generating markdown from transcription")
llm = self.model_variables['llm']
template = self.model_variables['transcript_template']
language_template = create_language_template(template, self.document_version.language)
transcript_prompt = ChatPromptTemplate.from_template(language_template)
setup = RunnablePassthrough()
output_parser = StrOutputParser()
chain = setup | transcript_prompt | llm | output_parser
input_transcript = {'transcript': transcription}
markdown = chain.invoke(input_transcript)
# Extract title from the markdown
title = self._extract_title_from_markdown(markdown)
return markdown, title
def _extract_title_from_markdown(self, markdown):
# Simple extraction of the first header as the title
lines = markdown.split('\n')
for line in lines:
if line.startswith('# '):
return line[2:].strip()
return "Untitled Audio Transcription"