- Improvements on document uploads (accept other files than html-files when entering a URL)
- Introduction of API-functionality (to be continued). Deduplication of document and url uploads between views and api. - Improvements on document processing - introduction of processor classes to streamline document inputs - Removed pure Youtube functionality, as Youtube retrieval of documents continuously changes. But added upload of srt, mp3, ogg and mp4
This commit is contained in:
187
eveai_workers/Processors/audio_processor.py
Normal file
187
eveai_workers/Processors/audio_processor.py
Normal file
@@ -0,0 +1,187 @@
|
||||
import io
|
||||
import os
|
||||
from pydub import AudioSegment
|
||||
import tempfile
|
||||
from langchain_core.output_parsers import StrOutputParser
|
||||
from langchain_core.prompts import ChatPromptTemplate
|
||||
from langchain_core.runnables import RunnablePassthrough
|
||||
from common.extensions import minio_client
|
||||
from common.utils.model_utils import create_language_template
|
||||
from .processor import Processor
|
||||
import subprocess
|
||||
|
||||
|
||||
class AudioProcessor(Processor):
|
||||
def __init__(self, tenant, model_variables, document_version):
|
||||
super().__init__(tenant, model_variables, document_version)
|
||||
self.transcription_client = model_variables['transcription_client']
|
||||
self.transcription_model = model_variables['transcription_model']
|
||||
self.ffmpeg_path = 'ffmpeg'
|
||||
|
||||
|
||||
def process(self):
|
||||
self._log("Starting Audio processing")
|
||||
try:
|
||||
file_data = minio_client.download_document_file(
|
||||
self.tenant.id,
|
||||
self.document_version.doc_id,
|
||||
self.document_version.language,
|
||||
self.document_version.id,
|
||||
self.document_version.file_name
|
||||
)
|
||||
|
||||
compressed_audio = self._compress_audio(file_data)
|
||||
transcription = self._transcribe_audio(compressed_audio)
|
||||
markdown, title = self._generate_markdown_from_transcription(transcription)
|
||||
|
||||
self._save_markdown(markdown)
|
||||
self._log("Finished processing Audio")
|
||||
return markdown, title
|
||||
except Exception as e:
|
||||
self._log(f"Error processing Audio: {str(e)}", level='error')
|
||||
raise
|
||||
|
||||
def _compress_audio(self, audio_data):
|
||||
self._log("Compressing audio")
|
||||
with tempfile.NamedTemporaryFile(delete=False, suffix=f'.{self.document_version.file_type}') as temp_input:
|
||||
temp_input.write(audio_data)
|
||||
temp_input.flush()
|
||||
|
||||
# Use a unique filename for the output to avoid conflicts
|
||||
output_filename = f'compressed_{os.urandom(8).hex()}.mp3'
|
||||
output_path = os.path.join(tempfile.gettempdir(), output_filename)
|
||||
|
||||
try:
|
||||
result = subprocess.run(
|
||||
[self.ffmpeg_path, '-y', '-i', temp_input.name, '-b:a', '64k', '-f', 'mp3', output_path],
|
||||
capture_output=True,
|
||||
text=True,
|
||||
check=True
|
||||
)
|
||||
|
||||
with open(output_path, 'rb') as f:
|
||||
compressed_data = f.read()
|
||||
|
||||
# Save compressed audio to MinIO
|
||||
compressed_filename = f"{self.document_version.id}_compressed.mp3"
|
||||
minio_client.upload_document_file(
|
||||
self.tenant.id,
|
||||
self.document_version.doc_id,
|
||||
self.document_version.language,
|
||||
self.document_version.id,
|
||||
compressed_filename,
|
||||
compressed_data
|
||||
)
|
||||
self._log(f"Saved compressed audio to MinIO: {compressed_filename}")
|
||||
|
||||
return compressed_data
|
||||
|
||||
except subprocess.CalledProcessError as e:
|
||||
error_message = f"Compression failed: {e.stderr}"
|
||||
self._log(error_message, level='error')
|
||||
raise Exception(error_message)
|
||||
|
||||
finally:
|
||||
# Clean up temporary files
|
||||
os.unlink(temp_input.name)
|
||||
if os.path.exists(output_path):
|
||||
os.unlink(output_path)
|
||||
|
||||
def _transcribe_audio(self, audio_data):
|
||||
self._log("Starting audio transcription")
|
||||
audio = AudioSegment.from_file(io.BytesIO(audio_data), format="mp3")
|
||||
|
||||
segment_length = 10 * 60 * 1000 # 10 minutes in milliseconds
|
||||
transcriptions = []
|
||||
|
||||
for i, chunk in enumerate(audio[::segment_length]):
|
||||
self._log(f'Processing chunk {i + 1} of {len(audio) // segment_length + 1}')
|
||||
|
||||
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_audio:
|
||||
chunk.export(temp_audio.name, format="mp3")
|
||||
temp_audio.flush()
|
||||
|
||||
try:
|
||||
file_size = os.path.getsize(temp_audio.name)
|
||||
self._log(f"Temporary audio file size: {file_size} bytes")
|
||||
|
||||
with open(temp_audio.name, 'rb') as audio_file:
|
||||
file_start = audio_file.read(100)
|
||||
self._log(f"First 100 bytes of audio file: {file_start}")
|
||||
audio_file.seek(0) # Reset file pointer to the beginning
|
||||
|
||||
self._log("Calling transcription API")
|
||||
transcription = self.transcription_client.audio.transcriptions.create(
|
||||
file=audio_file,
|
||||
model=self.transcription_model,
|
||||
language=self.document_version.language,
|
||||
response_format='verbose_json',
|
||||
)
|
||||
self._log("Transcription API call completed")
|
||||
|
||||
if transcription:
|
||||
# Handle the transcription result based on its type
|
||||
if isinstance(transcription, str):
|
||||
self._log(f"Transcription result (string): {transcription[:100]}...")
|
||||
transcriptions.append(transcription)
|
||||
elif hasattr(transcription, 'text'):
|
||||
self._log(
|
||||
f"Transcription result (object with 'text' attribute): {transcription.text[:100]}...")
|
||||
transcriptions.append(transcription.text)
|
||||
else:
|
||||
self._log(f"Transcription result (unknown type): {str(transcription)[:100]}...")
|
||||
transcriptions.append(str(transcription))
|
||||
else:
|
||||
self._log("Warning: Received empty transcription", level='warning')
|
||||
|
||||
except Exception as e:
|
||||
self._log(f"Error during transcription: {str(e)}", level='error')
|
||||
finally:
|
||||
os.unlink(temp_audio.name)
|
||||
|
||||
full_transcription = " ".join(filter(None, transcriptions))
|
||||
|
||||
if not full_transcription:
|
||||
self._log("Warning: No transcription was generated", level='warning')
|
||||
full_transcription = "No transcription available."
|
||||
|
||||
# Save transcription to MinIO
|
||||
transcription_filename = f"{self.document_version.id}_transcription.txt"
|
||||
minio_client.upload_document_file(
|
||||
self.tenant.id,
|
||||
self.document_version.doc_id,
|
||||
self.document_version.language,
|
||||
self.document_version.id,
|
||||
transcription_filename,
|
||||
full_transcription.encode('utf-8')
|
||||
)
|
||||
self._log(f"Saved transcription to MinIO: {transcription_filename}")
|
||||
|
||||
return full_transcription
|
||||
|
||||
def _generate_markdown_from_transcription(self, transcription):
|
||||
self._log("Generating markdown from transcription")
|
||||
llm = self.model_variables['llm']
|
||||
template = self.model_variables['transcript_template']
|
||||
language_template = create_language_template(template, self.document_version.language)
|
||||
transcript_prompt = ChatPromptTemplate.from_template(language_template)
|
||||
setup = RunnablePassthrough()
|
||||
output_parser = StrOutputParser()
|
||||
|
||||
chain = setup | transcript_prompt | llm | output_parser
|
||||
|
||||
input_transcript = {'transcript': transcription}
|
||||
markdown = chain.invoke(input_transcript)
|
||||
|
||||
# Extract title from the markdown
|
||||
title = self._extract_title_from_markdown(markdown)
|
||||
|
||||
return markdown, title
|
||||
|
||||
def _extract_title_from_markdown(self, markdown):
|
||||
# Simple extraction of the first header as the title
|
||||
lines = markdown.split('\n')
|
||||
for line in lines:
|
||||
if line.startswith('# '):
|
||||
return line[2:].strip()
|
||||
return "Untitled Audio Transcription"
|
||||
Reference in New Issue
Block a user