Start working on chunking en embedding task. Continu with embeddings.

This commit is contained in:
Josako
2024-05-08 22:40:55 +02:00
parent 667d99daa8
commit a4bf837d67
2 changed files with 135 additions and 24 deletions

View File

@@ -1,8 +1,19 @@
from datetime import datetime as dt, timezone as tz
from langchain_community.document_loaders.unstructured import UnstructuredAPIFileLoader
from flask import current_app
import os
# Unstructured commercial client imports
from unstructured_client import UnstructuredClient
from unstructured_client.models import shared
from unstructured_client.models.errors import SDKError
# OpenAI imports
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from langchain.chains.summarize import load_summarize_chain
from langchain.text_splitter import CharacterTextSplitter
from langchain_core.exceptions import LangChainException
from common.utils.database import Database
from common.models.document import DocumentVersion, EmbeddingMistral, EmbeddingSmallOpenAI
from common.extensions import db
@@ -11,8 +22,11 @@ from common.utils.celery_utils import current_celery
@current_celery.task(name='create_embeddings', queue='embeddings')
def create_embeddings(tenant_id, document_version_id, default_embedding_model):
import pydevd_pycharm
pydevd_pycharm.settrace('localhost', port=50170, stdoutToServer=True, stderrToServer=True)
# Setup Remote Debugging only if PYCHARM_DEBUG=True
if current_app.config['PYCHARM_DEBUG']:
import pydevd_pycharm
pydevd_pycharm.settrace('localhost', port=50170, stdoutToServer=True, stderrToServer=True)
current_app.logger.info(f'Creating embeddings for tenant {tenant_id} on document version {document_version_id} '
f'with model {default_embedding_model}')
@@ -32,38 +46,130 @@ def create_embeddings(tenant_id, document_version_id, default_embedding_model):
document_version.processing_started_at = dt.now(tz.utc)
db.session.commit()
embedding_provider = default_embedding_model.rsplit('.', 1)[0]
embedding_model = default_embedding_model.rsplit('.', 1)[1]
embed_provider = default_embedding_model.rsplit('.', 1)[0]
embed_model = default_embedding_model.rsplit('.', 1)[1]
# define embedding variables
match (embedding_provider, embedding_model):
match (embed_provider, embed_model):
case ('openai', 'text-embedding-3-small'):
embedding_model = EmbeddingSmallOpenAI()
case ('mistral', 'text-embedding-3-small'):
embedding_model = EmbeddingMistral()
embedding_function = embed_chunks_for_text_embedding_3_small
case ('mistral', 'mistral.mistral-embed'):
embedding_function = embed_chunks_for_mistral_embed
match document_version.file_type:
case 'pdf':
url = current_app.config.get('UNSTRUCTURED_FULL_URL')
api_key = current_app.config.get('UNSTRUCTURED_API_KEY')
file_path = os.path.join(current_app.config['UPLOAD_FOLDER'],
document_version.file_location,
document_version.file_name)
with open(file_path, 'rb') as f:
loader = UnstructuredAPIFileLoader(f,
url=url,
api_key=api_key,
mode='elements',
strategy='hi-res',
include_page_breaks=True,
unique_element_ids=True,
chunking_strategy='by_title',
max_characters=3000,
)
documents = loader.load()
print(documents)
if os.path.exists(file_path):
with open(file_path, 'rb') as f:
files = shared.Files(content=f.read(), file_name=document_version.file_name)
req = shared.PartitionParameters(
files=files,
strategy='hi_res',
hi_res_model_name='yolox',
coordinates=True,
extract_image_block_types=['Image', 'Table'],
chunking_strategy='by_title',
combine_under_n_chars=2000,
max_characters=3000,
)
try:
chunks = partition_doc_unstructured(tenant_id, document_version, req)
enriched_chunk_docs = enrich_chunks(tenant_id, document_version, chunks)
embedding_function(tenant_id, document_version, enriched_chunk_docs)
except Exception as e:
current_app.logger.error(f'Unable to create Embeddings for tenant {tenant_id} '
f'on document version {document_version.id} '
f'with model {default_embedding_model} '
f'error: {e}')
return
else: # file exists
current_app.logger.error(f'The physical file for document version {document_version_id} '
f'at {file_path} does not exist')
return
@current_celery.task(name='ask_eve_ai', queue='llm_interactions')
def ask_eve_ai(query):
# Interaction logic with LLMs like GPT (Langchain API calls, etc.)
pass
def enrich_chunks(tenant_id, document_version, chunks):
# We're adding filename and a summary of the first chunk to all the chunks to create global context
# using openAI to summarise
api_key = current_app.config.get('OPENAI_API_KEY')
# TODO: model selection to be adapted to model approach
llm = ChatOpenAI(api_key=api_key, temperature=0, model='gpt-4-turbo')
summary_template = current_app.config.get('GPT4_SUMMARY_TEMPLATE')
prompt = ChatPromptTemplate.from_template(summary_template)
chain = load_summarize_chain(llm, chain_type='stuff', prompt=prompt)
doc_creator = CharacterTextSplitter(chunk_size=9000, chunk_overlap=0)
text_to_summarize = doc_creator.create_documents(chunks[0]['text'])
try:
summary = chain.run(text_to_summarize)
chunk_global_context = f'Filename: {document_version.file_name}\nSummary:\n {summary}'
enriched_chunks = []
for chunk in chunks[1:]:
enriched_chunk_raw = f'{chunk_global_context}\n{chunk}'
enriched_chunk_doc = doc_creator.create_documents([enriched_chunk_raw])
enriched_chunks.append(enriched_chunk_doc)
return enriched_chunks
except LangChainException as e:
current_app.logger.error(f'Error creating summary for chunk enrichment for tenant {tenant_id} '
f'on document version {document_version.id} '
f'error: {e}')
raise
def partition_doc_unstructured(tenant_id, document_version, unstructured_request):
# Initiate the connection to unstructured.io
url = current_app.config.get('UNSTRUCTURED_FULL_URL')
api_key = current_app.config.get('UNSTRUCTURED_API_KEY')
unstructured_client = UnstructuredClient(server_url=url, api_key_auth=api_key)
try:
res = unstructured_client.general.partition(unstructured_request)
chunks = []
for el in res.elements:
match el['type']:
case 'Composite_element':
chunks.append(el['text'])
case 'Image':
pass
case 'Table':
chunks.append(el['metadata']['text_as_html'])
return chunks
except SDKError as e:
current_app.logger.error(f'Error creating embeddings for tenant {tenant_id} '
f'on document version {document_version.id} while chuncking'
f'error: {e}')
raise
def embed_chunks_for_text_embedding_3_small(tenant_id, document_version, chunks):
# Create embedding vectors using OpenAI
api_key = current_app.config.get('OPENAI_API_KEY')
embeddings_model = OpenAIEmbeddings(api_key=api_key, model='text-embedding-3-small')
try:
embeddings = embeddings_model.embed_documents(chunks)
except LangChainException as e:
current_app.logger.error(f'Error creating embeddings for tenant {tenant_id} '
f'on document version {document_version.id} while calling OpenAI API'
f'error: {e}')
raise
for chunk, embedding in zip(chunks, embeddings):
new_embedding = EmbeddingSmallOpenAI()
# TODO: continue here
return embeddings
def embed_chunks_for_mistral_embed(tenant_id, document_version, chunks):
pass