Start working on chunking en embedding task. Continu with embeddings.
This commit is contained in:
@@ -51,11 +51,16 @@ class Config(object):
|
|||||||
CELERY_TIMEZONE = 'UTC'
|
CELERY_TIMEZONE = 'UTC'
|
||||||
CELERY_ENABLE_UTC = True
|
CELERY_ENABLE_UTC = True
|
||||||
|
|
||||||
|
# LLM TEMPLATES
|
||||||
|
GPT4_SUMMARY_TEMPLATE = """Summarise the text in the same language as the provided text between triple backquotes.
|
||||||
|
```{context}```"""
|
||||||
|
|
||||||
|
|
||||||
class DevConfig(Config):
|
class DevConfig(Config):
|
||||||
DEVELOPMENT = True
|
DEVELOPMENT = True
|
||||||
DEBUG = True
|
DEBUG = True
|
||||||
FLASK_DEBUG = True
|
FLASK_DEBUG = True
|
||||||
|
PYCHARM_DEBUG = True
|
||||||
SQLALCHEMY_DATABASE_URI = 'postgresql+pg8000://josako@localhost:5432/eveAI'
|
SQLALCHEMY_DATABASE_URI = 'postgresql+pg8000://josako@localhost:5432/eveAI'
|
||||||
SQLALCHEMY_BINDS = {'public': 'postgresql+pg8000://josako@localhost:5432/eveAI'}
|
SQLALCHEMY_BINDS = {'public': 'postgresql+pg8000://josako@localhost:5432/eveAI'}
|
||||||
EXPLAIN_TEMPLATE_LOADING = False
|
EXPLAIN_TEMPLATE_LOADING = False
|
||||||
|
|||||||
@@ -1,8 +1,19 @@
|
|||||||
from datetime import datetime as dt, timezone as tz
|
from datetime import datetime as dt, timezone as tz
|
||||||
from langchain_community.document_loaders.unstructured import UnstructuredAPIFileLoader
|
|
||||||
from flask import current_app
|
from flask import current_app
|
||||||
import os
|
import os
|
||||||
|
|
||||||
|
# Unstructured commercial client imports
|
||||||
|
from unstructured_client import UnstructuredClient
|
||||||
|
from unstructured_client.models import shared
|
||||||
|
from unstructured_client.models.errors import SDKError
|
||||||
|
|
||||||
|
# OpenAI imports
|
||||||
|
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
||||||
|
from langchain_core.prompts import ChatPromptTemplate
|
||||||
|
from langchain.chains.summarize import load_summarize_chain
|
||||||
|
from langchain.text_splitter import CharacterTextSplitter
|
||||||
|
from langchain_core.exceptions import LangChainException
|
||||||
|
|
||||||
from common.utils.database import Database
|
from common.utils.database import Database
|
||||||
from common.models.document import DocumentVersion, EmbeddingMistral, EmbeddingSmallOpenAI
|
from common.models.document import DocumentVersion, EmbeddingMistral, EmbeddingSmallOpenAI
|
||||||
from common.extensions import db
|
from common.extensions import db
|
||||||
@@ -11,8 +22,11 @@ from common.utils.celery_utils import current_celery
|
|||||||
|
|
||||||
@current_celery.task(name='create_embeddings', queue='embeddings')
|
@current_celery.task(name='create_embeddings', queue='embeddings')
|
||||||
def create_embeddings(tenant_id, document_version_id, default_embedding_model):
|
def create_embeddings(tenant_id, document_version_id, default_embedding_model):
|
||||||
import pydevd_pycharm
|
# Setup Remote Debugging only if PYCHARM_DEBUG=True
|
||||||
pydevd_pycharm.settrace('localhost', port=50170, stdoutToServer=True, stderrToServer=True)
|
if current_app.config['PYCHARM_DEBUG']:
|
||||||
|
import pydevd_pycharm
|
||||||
|
pydevd_pycharm.settrace('localhost', port=50170, stdoutToServer=True, stderrToServer=True)
|
||||||
|
|
||||||
current_app.logger.info(f'Creating embeddings for tenant {tenant_id} on document version {document_version_id} '
|
current_app.logger.info(f'Creating embeddings for tenant {tenant_id} on document version {document_version_id} '
|
||||||
f'with model {default_embedding_model}')
|
f'with model {default_embedding_model}')
|
||||||
|
|
||||||
@@ -32,38 +46,130 @@ def create_embeddings(tenant_id, document_version_id, default_embedding_model):
|
|||||||
document_version.processing_started_at = dt.now(tz.utc)
|
document_version.processing_started_at = dt.now(tz.utc)
|
||||||
db.session.commit()
|
db.session.commit()
|
||||||
|
|
||||||
embedding_provider = default_embedding_model.rsplit('.', 1)[0]
|
embed_provider = default_embedding_model.rsplit('.', 1)[0]
|
||||||
embedding_model = default_embedding_model.rsplit('.', 1)[1]
|
embed_model = default_embedding_model.rsplit('.', 1)[1]
|
||||||
# define embedding variables
|
# define embedding variables
|
||||||
match (embedding_provider, embedding_model):
|
match (embed_provider, embed_model):
|
||||||
case ('openai', 'text-embedding-3-small'):
|
case ('openai', 'text-embedding-3-small'):
|
||||||
embedding_model = EmbeddingSmallOpenAI()
|
embedding_function = embed_chunks_for_text_embedding_3_small
|
||||||
case ('mistral', 'text-embedding-3-small'):
|
case ('mistral', 'mistral.mistral-embed'):
|
||||||
embedding_model = EmbeddingMistral()
|
embedding_function = embed_chunks_for_mistral_embed
|
||||||
|
|
||||||
match document_version.file_type:
|
match document_version.file_type:
|
||||||
case 'pdf':
|
case 'pdf':
|
||||||
url = current_app.config.get('UNSTRUCTURED_FULL_URL')
|
|
||||||
api_key = current_app.config.get('UNSTRUCTURED_API_KEY')
|
|
||||||
file_path = os.path.join(current_app.config['UPLOAD_FOLDER'],
|
file_path = os.path.join(current_app.config['UPLOAD_FOLDER'],
|
||||||
document_version.file_location,
|
document_version.file_location,
|
||||||
document_version.file_name)
|
document_version.file_name)
|
||||||
with open(file_path, 'rb') as f:
|
if os.path.exists(file_path):
|
||||||
loader = UnstructuredAPIFileLoader(f,
|
with open(file_path, 'rb') as f:
|
||||||
url=url,
|
files = shared.Files(content=f.read(), file_name=document_version.file_name)
|
||||||
api_key=api_key,
|
req = shared.PartitionParameters(
|
||||||
mode='elements',
|
files=files,
|
||||||
strategy='hi-res',
|
strategy='hi_res',
|
||||||
include_page_breaks=True,
|
hi_res_model_name='yolox',
|
||||||
unique_element_ids=True,
|
coordinates=True,
|
||||||
chunking_strategy='by_title',
|
extract_image_block_types=['Image', 'Table'],
|
||||||
max_characters=3000,
|
chunking_strategy='by_title',
|
||||||
)
|
combine_under_n_chars=2000,
|
||||||
documents = loader.load()
|
max_characters=3000,
|
||||||
print(documents)
|
)
|
||||||
|
try:
|
||||||
|
chunks = partition_doc_unstructured(tenant_id, document_version, req)
|
||||||
|
enriched_chunk_docs = enrich_chunks(tenant_id, document_version, chunks)
|
||||||
|
embedding_function(tenant_id, document_version, enriched_chunk_docs)
|
||||||
|
except Exception as e:
|
||||||
|
current_app.logger.error(f'Unable to create Embeddings for tenant {tenant_id} '
|
||||||
|
f'on document version {document_version.id} '
|
||||||
|
f'with model {default_embedding_model} '
|
||||||
|
f'error: {e}')
|
||||||
|
return
|
||||||
|
|
||||||
|
else: # file exists
|
||||||
|
current_app.logger.error(f'The physical file for document version {document_version_id} '
|
||||||
|
f'at {file_path} does not exist')
|
||||||
|
return
|
||||||
|
|
||||||
|
|
||||||
@current_celery.task(name='ask_eve_ai', queue='llm_interactions')
|
@current_celery.task(name='ask_eve_ai', queue='llm_interactions')
|
||||||
def ask_eve_ai(query):
|
def ask_eve_ai(query):
|
||||||
# Interaction logic with LLMs like GPT (Langchain API calls, etc.)
|
# Interaction logic with LLMs like GPT (Langchain API calls, etc.)
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
def enrich_chunks(tenant_id, document_version, chunks):
|
||||||
|
# We're adding filename and a summary of the first chunk to all the chunks to create global context
|
||||||
|
# using openAI to summarise
|
||||||
|
api_key = current_app.config.get('OPENAI_API_KEY')
|
||||||
|
# TODO: model selection to be adapted to model approach
|
||||||
|
llm = ChatOpenAI(api_key=api_key, temperature=0, model='gpt-4-turbo')
|
||||||
|
|
||||||
|
summary_template = current_app.config.get('GPT4_SUMMARY_TEMPLATE')
|
||||||
|
prompt = ChatPromptTemplate.from_template(summary_template)
|
||||||
|
|
||||||
|
chain = load_summarize_chain(llm, chain_type='stuff', prompt=prompt)
|
||||||
|
|
||||||
|
doc_creator = CharacterTextSplitter(chunk_size=9000, chunk_overlap=0)
|
||||||
|
text_to_summarize = doc_creator.create_documents(chunks[0]['text'])
|
||||||
|
try:
|
||||||
|
summary = chain.run(text_to_summarize)
|
||||||
|
chunk_global_context = f'Filename: {document_version.file_name}\nSummary:\n {summary}'
|
||||||
|
enriched_chunks = []
|
||||||
|
for chunk in chunks[1:]:
|
||||||
|
enriched_chunk_raw = f'{chunk_global_context}\n{chunk}'
|
||||||
|
enriched_chunk_doc = doc_creator.create_documents([enriched_chunk_raw])
|
||||||
|
enriched_chunks.append(enriched_chunk_doc)
|
||||||
|
|
||||||
|
return enriched_chunks
|
||||||
|
|
||||||
|
except LangChainException as e:
|
||||||
|
current_app.logger.error(f'Error creating summary for chunk enrichment for tenant {tenant_id} '
|
||||||
|
f'on document version {document_version.id} '
|
||||||
|
f'error: {e}')
|
||||||
|
raise
|
||||||
|
|
||||||
|
|
||||||
|
def partition_doc_unstructured(tenant_id, document_version, unstructured_request):
|
||||||
|
# Initiate the connection to unstructured.io
|
||||||
|
url = current_app.config.get('UNSTRUCTURED_FULL_URL')
|
||||||
|
api_key = current_app.config.get('UNSTRUCTURED_API_KEY')
|
||||||
|
unstructured_client = UnstructuredClient(server_url=url, api_key_auth=api_key)
|
||||||
|
|
||||||
|
try:
|
||||||
|
res = unstructured_client.general.partition(unstructured_request)
|
||||||
|
chunks = []
|
||||||
|
for el in res.elements:
|
||||||
|
match el['type']:
|
||||||
|
case 'Composite_element':
|
||||||
|
chunks.append(el['text'])
|
||||||
|
case 'Image':
|
||||||
|
pass
|
||||||
|
case 'Table':
|
||||||
|
chunks.append(el['metadata']['text_as_html'])
|
||||||
|
return chunks
|
||||||
|
except SDKError as e:
|
||||||
|
current_app.logger.error(f'Error creating embeddings for tenant {tenant_id} '
|
||||||
|
f'on document version {document_version.id} while chuncking'
|
||||||
|
f'error: {e}')
|
||||||
|
raise
|
||||||
|
|
||||||
|
|
||||||
|
def embed_chunks_for_text_embedding_3_small(tenant_id, document_version, chunks):
|
||||||
|
# Create embedding vectors using OpenAI
|
||||||
|
api_key = current_app.config.get('OPENAI_API_KEY')
|
||||||
|
embeddings_model = OpenAIEmbeddings(api_key=api_key, model='text-embedding-3-small')
|
||||||
|
try:
|
||||||
|
embeddings = embeddings_model.embed_documents(chunks)
|
||||||
|
except LangChainException as e:
|
||||||
|
current_app.logger.error(f'Error creating embeddings for tenant {tenant_id} '
|
||||||
|
f'on document version {document_version.id} while calling OpenAI API'
|
||||||
|
f'error: {e}')
|
||||||
|
raise
|
||||||
|
|
||||||
|
for chunk, embedding in zip(chunks, embeddings):
|
||||||
|
new_embedding = EmbeddingSmallOpenAI()
|
||||||
|
# TODO: continue here
|
||||||
|
return embeddings
|
||||||
|
|
||||||
|
|
||||||
|
def embed_chunks_for_mistral_embed(tenant_id, document_version, chunks):
|
||||||
|
pass
|
||||||
|
|||||||
Reference in New Issue
Block a user