Start working on chunking en embedding task. Continu with embeddings.
This commit is contained in:
@@ -51,11 +51,16 @@ class Config(object):
|
||||
CELERY_TIMEZONE = 'UTC'
|
||||
CELERY_ENABLE_UTC = True
|
||||
|
||||
# LLM TEMPLATES
|
||||
GPT4_SUMMARY_TEMPLATE = """Summarise the text in the same language as the provided text between triple backquotes.
|
||||
```{context}```"""
|
||||
|
||||
|
||||
class DevConfig(Config):
|
||||
DEVELOPMENT = True
|
||||
DEBUG = True
|
||||
FLASK_DEBUG = True
|
||||
PYCHARM_DEBUG = True
|
||||
SQLALCHEMY_DATABASE_URI = 'postgresql+pg8000://josako@localhost:5432/eveAI'
|
||||
SQLALCHEMY_BINDS = {'public': 'postgresql+pg8000://josako@localhost:5432/eveAI'}
|
||||
EXPLAIN_TEMPLATE_LOADING = False
|
||||
|
||||
@@ -1,8 +1,19 @@
|
||||
from datetime import datetime as dt, timezone as tz
|
||||
from langchain_community.document_loaders.unstructured import UnstructuredAPIFileLoader
|
||||
from flask import current_app
|
||||
import os
|
||||
|
||||
# Unstructured commercial client imports
|
||||
from unstructured_client import UnstructuredClient
|
||||
from unstructured_client.models import shared
|
||||
from unstructured_client.models.errors import SDKError
|
||||
|
||||
# OpenAI imports
|
||||
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
||||
from langchain_core.prompts import ChatPromptTemplate
|
||||
from langchain.chains.summarize import load_summarize_chain
|
||||
from langchain.text_splitter import CharacterTextSplitter
|
||||
from langchain_core.exceptions import LangChainException
|
||||
|
||||
from common.utils.database import Database
|
||||
from common.models.document import DocumentVersion, EmbeddingMistral, EmbeddingSmallOpenAI
|
||||
from common.extensions import db
|
||||
@@ -11,8 +22,11 @@ from common.utils.celery_utils import current_celery
|
||||
|
||||
@current_celery.task(name='create_embeddings', queue='embeddings')
|
||||
def create_embeddings(tenant_id, document_version_id, default_embedding_model):
|
||||
# Setup Remote Debugging only if PYCHARM_DEBUG=True
|
||||
if current_app.config['PYCHARM_DEBUG']:
|
||||
import pydevd_pycharm
|
||||
pydevd_pycharm.settrace('localhost', port=50170, stdoutToServer=True, stderrToServer=True)
|
||||
|
||||
current_app.logger.info(f'Creating embeddings for tenant {tenant_id} on document version {document_version_id} '
|
||||
f'with model {default_embedding_model}')
|
||||
|
||||
@@ -32,38 +46,130 @@ def create_embeddings(tenant_id, document_version_id, default_embedding_model):
|
||||
document_version.processing_started_at = dt.now(tz.utc)
|
||||
db.session.commit()
|
||||
|
||||
embedding_provider = default_embedding_model.rsplit('.', 1)[0]
|
||||
embedding_model = default_embedding_model.rsplit('.', 1)[1]
|
||||
embed_provider = default_embedding_model.rsplit('.', 1)[0]
|
||||
embed_model = default_embedding_model.rsplit('.', 1)[1]
|
||||
# define embedding variables
|
||||
match (embedding_provider, embedding_model):
|
||||
match (embed_provider, embed_model):
|
||||
case ('openai', 'text-embedding-3-small'):
|
||||
embedding_model = EmbeddingSmallOpenAI()
|
||||
case ('mistral', 'text-embedding-3-small'):
|
||||
embedding_model = EmbeddingMistral()
|
||||
embedding_function = embed_chunks_for_text_embedding_3_small
|
||||
case ('mistral', 'mistral.mistral-embed'):
|
||||
embedding_function = embed_chunks_for_mistral_embed
|
||||
|
||||
match document_version.file_type:
|
||||
case 'pdf':
|
||||
url = current_app.config.get('UNSTRUCTURED_FULL_URL')
|
||||
api_key = current_app.config.get('UNSTRUCTURED_API_KEY')
|
||||
file_path = os.path.join(current_app.config['UPLOAD_FOLDER'],
|
||||
document_version.file_location,
|
||||
document_version.file_name)
|
||||
if os.path.exists(file_path):
|
||||
with open(file_path, 'rb') as f:
|
||||
loader = UnstructuredAPIFileLoader(f,
|
||||
url=url,
|
||||
api_key=api_key,
|
||||
mode='elements',
|
||||
strategy='hi-res',
|
||||
include_page_breaks=True,
|
||||
unique_element_ids=True,
|
||||
files = shared.Files(content=f.read(), file_name=document_version.file_name)
|
||||
req = shared.PartitionParameters(
|
||||
files=files,
|
||||
strategy='hi_res',
|
||||
hi_res_model_name='yolox',
|
||||
coordinates=True,
|
||||
extract_image_block_types=['Image', 'Table'],
|
||||
chunking_strategy='by_title',
|
||||
combine_under_n_chars=2000,
|
||||
max_characters=3000,
|
||||
)
|
||||
documents = loader.load()
|
||||
print(documents)
|
||||
try:
|
||||
chunks = partition_doc_unstructured(tenant_id, document_version, req)
|
||||
enriched_chunk_docs = enrich_chunks(tenant_id, document_version, chunks)
|
||||
embedding_function(tenant_id, document_version, enriched_chunk_docs)
|
||||
except Exception as e:
|
||||
current_app.logger.error(f'Unable to create Embeddings for tenant {tenant_id} '
|
||||
f'on document version {document_version.id} '
|
||||
f'with model {default_embedding_model} '
|
||||
f'error: {e}')
|
||||
return
|
||||
|
||||
else: # file exists
|
||||
current_app.logger.error(f'The physical file for document version {document_version_id} '
|
||||
f'at {file_path} does not exist')
|
||||
return
|
||||
|
||||
|
||||
@current_celery.task(name='ask_eve_ai', queue='llm_interactions')
|
||||
def ask_eve_ai(query):
|
||||
# Interaction logic with LLMs like GPT (Langchain API calls, etc.)
|
||||
pass
|
||||
|
||||
|
||||
def enrich_chunks(tenant_id, document_version, chunks):
|
||||
# We're adding filename and a summary of the first chunk to all the chunks to create global context
|
||||
# using openAI to summarise
|
||||
api_key = current_app.config.get('OPENAI_API_KEY')
|
||||
# TODO: model selection to be adapted to model approach
|
||||
llm = ChatOpenAI(api_key=api_key, temperature=0, model='gpt-4-turbo')
|
||||
|
||||
summary_template = current_app.config.get('GPT4_SUMMARY_TEMPLATE')
|
||||
prompt = ChatPromptTemplate.from_template(summary_template)
|
||||
|
||||
chain = load_summarize_chain(llm, chain_type='stuff', prompt=prompt)
|
||||
|
||||
doc_creator = CharacterTextSplitter(chunk_size=9000, chunk_overlap=0)
|
||||
text_to_summarize = doc_creator.create_documents(chunks[0]['text'])
|
||||
try:
|
||||
summary = chain.run(text_to_summarize)
|
||||
chunk_global_context = f'Filename: {document_version.file_name}\nSummary:\n {summary}'
|
||||
enriched_chunks = []
|
||||
for chunk in chunks[1:]:
|
||||
enriched_chunk_raw = f'{chunk_global_context}\n{chunk}'
|
||||
enriched_chunk_doc = doc_creator.create_documents([enriched_chunk_raw])
|
||||
enriched_chunks.append(enriched_chunk_doc)
|
||||
|
||||
return enriched_chunks
|
||||
|
||||
except LangChainException as e:
|
||||
current_app.logger.error(f'Error creating summary for chunk enrichment for tenant {tenant_id} '
|
||||
f'on document version {document_version.id} '
|
||||
f'error: {e}')
|
||||
raise
|
||||
|
||||
|
||||
def partition_doc_unstructured(tenant_id, document_version, unstructured_request):
|
||||
# Initiate the connection to unstructured.io
|
||||
url = current_app.config.get('UNSTRUCTURED_FULL_URL')
|
||||
api_key = current_app.config.get('UNSTRUCTURED_API_KEY')
|
||||
unstructured_client = UnstructuredClient(server_url=url, api_key_auth=api_key)
|
||||
|
||||
try:
|
||||
res = unstructured_client.general.partition(unstructured_request)
|
||||
chunks = []
|
||||
for el in res.elements:
|
||||
match el['type']:
|
||||
case 'Composite_element':
|
||||
chunks.append(el['text'])
|
||||
case 'Image':
|
||||
pass
|
||||
case 'Table':
|
||||
chunks.append(el['metadata']['text_as_html'])
|
||||
return chunks
|
||||
except SDKError as e:
|
||||
current_app.logger.error(f'Error creating embeddings for tenant {tenant_id} '
|
||||
f'on document version {document_version.id} while chuncking'
|
||||
f'error: {e}')
|
||||
raise
|
||||
|
||||
|
||||
def embed_chunks_for_text_embedding_3_small(tenant_id, document_version, chunks):
|
||||
# Create embedding vectors using OpenAI
|
||||
api_key = current_app.config.get('OPENAI_API_KEY')
|
||||
embeddings_model = OpenAIEmbeddings(api_key=api_key, model='text-embedding-3-small')
|
||||
try:
|
||||
embeddings = embeddings_model.embed_documents(chunks)
|
||||
except LangChainException as e:
|
||||
current_app.logger.error(f'Error creating embeddings for tenant {tenant_id} '
|
||||
f'on document version {document_version.id} while calling OpenAI API'
|
||||
f'error: {e}')
|
||||
raise
|
||||
|
||||
for chunk, embedding in zip(chunks, embeddings):
|
||||
new_embedding = EmbeddingSmallOpenAI()
|
||||
# TODO: continue here
|
||||
return embeddings
|
||||
|
||||
|
||||
def embed_chunks_for_mistral_embed(tenant_id, document_version, chunks):
|
||||
pass
|
||||
|
||||
Reference in New Issue
Block a user