- turned model_variables into a class with lazy loading
- some improvements to Healthchecks
This commit is contained in:
@@ -1,23 +1,31 @@
|
||||
from langchain_core.retrievers import BaseRetriever
|
||||
from sqlalchemy import asc
|
||||
from sqlalchemy.exc import SQLAlchemyError
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import Field, BaseModel, PrivateAttr
|
||||
from typing import Any, Dict
|
||||
from flask import current_app
|
||||
|
||||
from common.extensions import db
|
||||
from common.models.interaction import ChatSession, Interaction
|
||||
from common.utils.datetime_utils import get_date_in_timezone
|
||||
from common.utils.model_utils import ModelVariables
|
||||
|
||||
|
||||
class EveAIHistoryRetriever(BaseRetriever):
|
||||
model_variables: Dict[str, Any] = Field(...)
|
||||
session_id: str = Field(...)
|
||||
class EveAIHistoryRetriever(BaseRetriever, BaseModel):
|
||||
_model_variables: ModelVariables = PrivateAttr()
|
||||
_session_id: str = PrivateAttr()
|
||||
|
||||
def __init__(self, model_variables: Dict[str, Any], session_id: str):
|
||||
def __init__(self, model_variables: ModelVariables, session_id: str):
|
||||
super().__init__()
|
||||
self.model_variables = model_variables
|
||||
self.session_id = session_id
|
||||
self._model_variables = model_variables
|
||||
self._session_id = session_id
|
||||
|
||||
@property
|
||||
def model_variables(self) -> ModelVariables:
|
||||
return self._model_variables
|
||||
|
||||
@property
|
||||
def session_id(self) -> str:
|
||||
return self._session_id
|
||||
|
||||
def _get_relevant_documents(self, query: str):
|
||||
current_app.logger.debug(f'Retrieving history of interactions for query: {query}')
|
||||
@@ -1,30 +1,39 @@
|
||||
from langchain_core.retrievers import BaseRetriever
|
||||
from sqlalchemy import func, and_, or_, desc
|
||||
from sqlalchemy.exc import SQLAlchemyError
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, PrivateAttr
|
||||
from typing import Any, Dict
|
||||
from flask import current_app
|
||||
|
||||
from common.extensions import db
|
||||
from common.models.document import Document, DocumentVersion
|
||||
from common.utils.datetime_utils import get_date_in_timezone
|
||||
from common.utils.model_utils import ModelVariables
|
||||
|
||||
|
||||
class EveAIRetriever(BaseRetriever):
|
||||
model_variables: Dict[str, Any] = Field(...)
|
||||
tenant_info: Dict[str, Any] = Field(...)
|
||||
class EveAIRetriever(BaseRetriever, BaseModel):
|
||||
_model_variables: ModelVariables = PrivateAttr()
|
||||
_tenant_info: Dict[str, Any] = PrivateAttr()
|
||||
|
||||
def __init__(self, model_variables: Dict[str, Any], tenant_info: Dict[str, Any]):
|
||||
def __init__(self, model_variables: ModelVariables, tenant_info: Dict[str, Any]):
|
||||
super().__init__()
|
||||
self.model_variables = model_variables
|
||||
self.tenant_info = tenant_info
|
||||
current_app.logger.debug(f'Model variables type: {type(model_variables)}')
|
||||
self._model_variables = model_variables
|
||||
self._tenant_info = tenant_info
|
||||
|
||||
@property
|
||||
def model_variables(self) -> ModelVariables:
|
||||
return self._model_variables
|
||||
|
||||
@property
|
||||
def tenant_info(self) -> Dict[str, Any]:
|
||||
return self._tenant_info
|
||||
|
||||
def _get_relevant_documents(self, query: str):
|
||||
|
||||
|
||||
|
||||
current_app.logger.debug(f'Retrieving relevant documents for query: {query}')
|
||||
query_embedding = self._get_query_embedding(query)
|
||||
current_app.logger.debug(f'Model Variables Private: {type(self._model_variables)}')
|
||||
current_app.logger.debug(f'Model Variables Property: {type(self.model_variables)}')
|
||||
db_class = self.model_variables['embedding_db_model']
|
||||
similarity_threshold = self.model_variables['similarity_threshold']
|
||||
k = self.model_variables['k']
|
||||
28
common/models/monitoring.py
Normal file
28
common/models/monitoring.py
Normal file
@@ -0,0 +1,28 @@
|
||||
from common.extensions import db
|
||||
from sqlalchemy.dialects.postgresql import JSONB
|
||||
import sqlalchemy as sa
|
||||
|
||||
|
||||
class LLMUsageMetric(db.Model):
|
||||
__bind_key__ = 'public'
|
||||
__table_args__ = {'schema': 'public'}
|
||||
|
||||
id = db.Column(db.Integer, primary_key=True)
|
||||
tenant_id = db.Column(db.Integer, nullable=False)
|
||||
environment = db.Column(db.String(20), nullable=False)
|
||||
activity = db.Column(db.String(20), nullable=False)
|
||||
sub_activity = db.Column(db.String(20), nullable=False)
|
||||
activity_detail = db.Column(db.String(50), nullable=True)
|
||||
session_id = db.Column(db.String(50), nullable=True) # Chat Session ID
|
||||
interaction_id = db.Column(db.Integer, nullable=True) # Chat Interaction ID
|
||||
document_version_id = db.Column(db.Integer, nullable=True)
|
||||
prompt_tokens = db.Column(db.Integer, nullable=True)
|
||||
completion_tokens = db.Column(db.Integer, nullable=True)
|
||||
total_tokens = db.Column(db.Integer, nullable=True)
|
||||
cost = db.Column(db.Float, nullable=True)
|
||||
latency = db.Column(db.Float, nullable=True)
|
||||
model_name = db.Column(db.String(50), nullable=False)
|
||||
timestamp = db.Column(db.DateTime, nullable=False)
|
||||
additional_info = db.Column(JSONB, nullable=True)
|
||||
|
||||
# Add any additional fields or methods as needed
|
||||
@@ -2,7 +2,6 @@ from common.extensions import db
|
||||
from flask_security import UserMixin, RoleMixin
|
||||
from sqlalchemy.dialects.postgresql import ARRAY
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy import CheckConstraint
|
||||
|
||||
|
||||
class Tenant(db.Model):
|
||||
|
||||
@@ -5,14 +5,14 @@ from flask import current_app
|
||||
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
||||
from langchain_anthropic import ChatAnthropic
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field
|
||||
from langchain.prompts import ChatPromptTemplate
|
||||
import ast
|
||||
from typing import List
|
||||
from typing import List, Any, Iterator
|
||||
from collections.abc import MutableMapping
|
||||
from openai import OpenAI
|
||||
# from groq import Groq
|
||||
from portkey_ai import createHeaders, PORTKEY_GATEWAY_URL
|
||||
|
||||
from common.models.document import EmbeddingSmallOpenAI, EmbeddingLargeOpenAI
|
||||
from common.models.user import Tenant
|
||||
from config.model_config import MODEL_CONFIG
|
||||
|
||||
|
||||
class CitedAnswer(BaseModel):
|
||||
@@ -36,180 +36,221 @@ def set_language_prompt_template(cls, language_prompt):
|
||||
cls.__doc__ = language_prompt
|
||||
|
||||
|
||||
def select_model_variables(tenant):
|
||||
embedding_provider = tenant.embedding_model.rsplit('.', 1)[0]
|
||||
embedding_model = tenant.embedding_model.rsplit('.', 1)[1]
|
||||
class ModelVariables(MutableMapping):
|
||||
def __init__(self, tenant: Tenant):
|
||||
self.tenant = tenant
|
||||
self._variables = self._initialize_variables()
|
||||
self._embedding_model = None
|
||||
self._llm = None
|
||||
self._llm_no_rag = None
|
||||
self._transcription_client = None
|
||||
self._prompt_templates = {}
|
||||
self._embedding_db_model = None
|
||||
|
||||
llm_provider = tenant.llm_model.rsplit('.', 1)[0]
|
||||
llm_model = tenant.llm_model.rsplit('.', 1)[1]
|
||||
def _initialize_variables(self):
|
||||
variables = {}
|
||||
|
||||
# Set model variables
|
||||
model_variables = {}
|
||||
if tenant.es_k:
|
||||
model_variables['k'] = tenant.es_k
|
||||
else:
|
||||
model_variables['k'] = 5
|
||||
# We initialize the variables that are available knowing the tenant. For the other, we will apply 'lazy loading'
|
||||
variables['k'] = self.tenant.es_k or 5
|
||||
variables['similarity_threshold'] = self.tenant.es_similarity_threshold or 0.7
|
||||
variables['RAG_temperature'] = self.tenant.chat_RAG_temperature or 0.3
|
||||
variables['no_RAG_temperature'] = self.tenant.chat_no_RAG_temperature or 0.5
|
||||
variables['embed_tuning'] = self.tenant.embed_tuning or False
|
||||
variables['rag_tuning'] = self.tenant.rag_tuning or False
|
||||
variables['rag_context'] = self.tenant.rag_context or " "
|
||||
|
||||
if tenant.es_similarity_threshold:
|
||||
model_variables['similarity_threshold'] = tenant.es_similarity_threshold
|
||||
else:
|
||||
model_variables['similarity_threshold'] = 0.7
|
||||
# Set HTML Chunking Variables
|
||||
variables['html_tags'] = self.tenant.html_tags
|
||||
variables['html_end_tags'] = self.tenant.html_end_tags
|
||||
variables['html_included_elements'] = self.tenant.html_included_elements
|
||||
variables['html_excluded_elements'] = self.tenant.html_excluded_elements
|
||||
variables['html_excluded_classes'] = self.tenant.html_excluded_classes
|
||||
|
||||
if tenant.chat_RAG_temperature:
|
||||
model_variables['RAG_temperature'] = tenant.chat_RAG_temperature
|
||||
else:
|
||||
model_variables['RAG_temperature'] = 0.3
|
||||
# Set Chunk Size variables
|
||||
variables['min_chunk_size'] = self.tenant.min_chunk_size
|
||||
variables['max_chunk_size'] = self.tenant.max_chunk_size
|
||||
|
||||
if tenant.chat_no_RAG_temperature:
|
||||
model_variables['no_RAG_temperature'] = tenant.chat_no_RAG_temperature
|
||||
else:
|
||||
model_variables['no_RAG_temperature'] = 0.5
|
||||
# Set model providers
|
||||
variables['embedding_provider'], variables['embedding_model'] = self.tenant.embedding_model.rsplit('.', 1)
|
||||
variables['llm_provider'], variables['llm_model'] = self.tenant.llm_model.rsplit('.', 1)
|
||||
variables["templates"] = current_app.config['PROMPT_TEMPLATES'][(f"{variables['llm_provider']}."
|
||||
f"{variables['llm_model']}")]
|
||||
current_app.logger.info(f"Loaded prompt templates: \n")
|
||||
current_app.logger.info(f"{variables['templates']}")
|
||||
|
||||
# Set Tuning variables
|
||||
if tenant.embed_tuning:
|
||||
model_variables['embed_tuning'] = tenant.embed_tuning
|
||||
else:
|
||||
model_variables['embed_tuning'] = False
|
||||
# Set model-specific configurations
|
||||
model_config = MODEL_CONFIG.get(variables['llm_provider'], {}).get(variables['llm_model'], {})
|
||||
variables.update(model_config)
|
||||
|
||||
if tenant.rag_tuning:
|
||||
model_variables['rag_tuning'] = tenant.rag_tuning
|
||||
else:
|
||||
model_variables['rag_tuning'] = False
|
||||
variables['annotation_chunk_length'] = current_app.config['ANNOTATION_TEXT_CHUNK_LENGTH'][self.tenant.llm_model]
|
||||
|
||||
if tenant.rag_context:
|
||||
model_variables['rag_context'] = tenant.rag_context
|
||||
else:
|
||||
model_variables['rag_context'] = " "
|
||||
if variables['tool_calling_supported']:
|
||||
variables['cited_answer_cls'] = CitedAnswer
|
||||
|
||||
# Set HTML Chunking Variables
|
||||
model_variables['html_tags'] = tenant.html_tags
|
||||
model_variables['html_end_tags'] = tenant.html_end_tags
|
||||
model_variables['html_included_elements'] = tenant.html_included_elements
|
||||
model_variables['html_excluded_elements'] = tenant.html_excluded_elements
|
||||
model_variables['html_excluded_classes'] = tenant.html_excluded_classes
|
||||
return variables
|
||||
|
||||
# Set Chunk Size variables
|
||||
model_variables['min_chunk_size'] = tenant.min_chunk_size
|
||||
model_variables['max_chunk_size'] = tenant.max_chunk_size
|
||||
@property
|
||||
def embedding_model(self):
|
||||
if self._embedding_model is None:
|
||||
environment = os.getenv('FLASK_ENV', 'development')
|
||||
portkey_metadata = {'tenant_id': str(self.tenant.id), 'environment': environment}
|
||||
|
||||
environment = os.getenv('FLASK_ENV', 'development')
|
||||
portkey_metadata = {'tenant_id': str(tenant.id), 'environment': environment}
|
||||
if self._variables['embedding_provider'] == 'openai':
|
||||
portkey_headers = createHeaders(api_key=os.getenv('PORTKEY_API_KEY'),
|
||||
provider='openai',
|
||||
metadata=portkey_metadata)
|
||||
api_key = os.getenv('OPENAI_API_KEY')
|
||||
model = self._variables['embedding_model']
|
||||
self._embedding_model = OpenAIEmbeddings(api_key=api_key,
|
||||
model=model,
|
||||
base_url=PORTKEY_GATEWAY_URL,
|
||||
default_headers=portkey_headers)
|
||||
self._embedding_db_model = EmbeddingSmallOpenAI \
|
||||
if model == 'text-embedding-3-small' \
|
||||
else EmbeddingLargeOpenAI
|
||||
else:
|
||||
raise ValueError(f"Invalid embedding provider: {self._variables['embedding_provider']}")
|
||||
|
||||
# Set Embedding variables
|
||||
match embedding_provider:
|
||||
case 'openai':
|
||||
portkey_headers = createHeaders(api_key=current_app.config.get('PORTKEY_API_KEY'),
|
||||
provider='openai',
|
||||
metadata=portkey_metadata)
|
||||
match embedding_model:
|
||||
case 'text-embedding-3-small':
|
||||
api_key = current_app.config.get('OPENAI_API_KEY')
|
||||
model_variables['embedding_model'] = OpenAIEmbeddings(api_key=api_key,
|
||||
model='text-embedding-3-small',
|
||||
base_url=PORTKEY_GATEWAY_URL,
|
||||
default_headers=portkey_headers
|
||||
)
|
||||
model_variables['embedding_db_model'] = EmbeddingSmallOpenAI
|
||||
case 'text-embedding-3-large':
|
||||
api_key = current_app.config.get('OPENAI_API_KEY')
|
||||
model_variables['embedding_model'] = OpenAIEmbeddings(api_key=api_key,
|
||||
model='text-embedding-3-large',
|
||||
base_url=PORTKEY_GATEWAY_URL,
|
||||
default_headers=portkey_headers
|
||||
)
|
||||
model_variables['embedding_db_model'] = EmbeddingLargeOpenAI
|
||||
case _:
|
||||
raise Exception(f'Error setting model variables for tenant {tenant.id} '
|
||||
f'error: Invalid embedding model')
|
||||
case _:
|
||||
raise Exception(f'Error setting model variables for tenant {tenant.id} '
|
||||
f'error: Invalid embedding provider')
|
||||
return self._embedding_model
|
||||
|
||||
# Set Chat model variables
|
||||
match llm_provider:
|
||||
case 'openai':
|
||||
portkey_headers = createHeaders(api_key=current_app.config.get('PORTKEY_API_KEY'),
|
||||
@property
|
||||
def llm(self):
|
||||
if self._llm is None:
|
||||
self._initialize_llm()
|
||||
return self._llm
|
||||
|
||||
@property
|
||||
def llm_no_rag(self):
|
||||
if self._llm_no_rag is None:
|
||||
self._initialize_llm()
|
||||
return self._llm_no_rag
|
||||
|
||||
def _initialize_llm(self):
|
||||
environment = os.getenv('FLASK_ENV', 'development')
|
||||
portkey_metadata = {'tenant_id': str(self.tenant.id), 'environment': environment}
|
||||
|
||||
if self._variables['llm_provider'] == 'openai':
|
||||
portkey_headers = createHeaders(api_key=os.getenv('PORTKEY_API_KEY'),
|
||||
metadata=portkey_metadata,
|
||||
provider='openai')
|
||||
tool_calling_supported = False
|
||||
api_key = current_app.config.get('OPENAI_API_KEY')
|
||||
model_variables['llm'] = ChatOpenAI(api_key=api_key,
|
||||
model=llm_model,
|
||||
temperature=model_variables['RAG_temperature'],
|
||||
api_key = os.getenv('OPENAI_API_KEY')
|
||||
self._llm = ChatOpenAI(api_key=api_key,
|
||||
model=self._variables['llm_model'],
|
||||
temperature=self._variables['RAG_temperature'],
|
||||
base_url=PORTKEY_GATEWAY_URL,
|
||||
default_headers=portkey_headers)
|
||||
self._llm_no_rag = ChatOpenAI(api_key=api_key,
|
||||
model=self._variables['llm_model'],
|
||||
temperature=self._variables['no_RAG_temperature'],
|
||||
base_url=PORTKEY_GATEWAY_URL,
|
||||
default_headers=portkey_headers)
|
||||
self._variables['tool_calling_supported'] = self._variables['llm_model'] in ['gpt-4o', 'gpt-4o-mini']
|
||||
elif self._variables['llm_provider'] == 'anthropic':
|
||||
api_key = os.getenv('ANTHROPIC_API_KEY')
|
||||
llm_model_ext = os.getenv('ANTHROPIC_LLM_VERSIONS', {}).get(self._variables['llm_model'])
|
||||
self._llm = ChatAnthropic(api_key=api_key,
|
||||
model=llm_model_ext,
|
||||
temperature=self._variables['RAG_temperature'])
|
||||
self._llm_no_rag = ChatAnthropic(api_key=api_key,
|
||||
model=llm_model_ext,
|
||||
temperature=self._variables['RAG_temperature'])
|
||||
self._variables['tool_calling_supported'] = True
|
||||
else:
|
||||
raise ValueError(f"Invalid chat provider: {self._variables['llm_provider']}")
|
||||
|
||||
@property
|
||||
def transcription_client(self):
|
||||
if self._transcription_client is None:
|
||||
environment = os.getenv('FLASK_ENV', 'development')
|
||||
portkey_metadata = {'tenant_id': str(self.tenant.id), 'environment': environment}
|
||||
portkey_headers = createHeaders(api_key=os.getenv('PORTKEY_API_KEY'),
|
||||
metadata=portkey_metadata,
|
||||
provider='openai')
|
||||
api_key = os.getenv('OPENAI_API_KEY')
|
||||
self._transcription_client = OpenAI(api_key=api_key,
|
||||
base_url=PORTKEY_GATEWAY_URL,
|
||||
default_headers=portkey_headers)
|
||||
model_variables['llm_no_rag'] = ChatOpenAI(api_key=api_key,
|
||||
model=llm_model,
|
||||
temperature=model_variables['no_RAG_temperature'],
|
||||
base_url=PORTKEY_GATEWAY_URL,
|
||||
default_headers=portkey_headers)
|
||||
tool_calling_supported = False
|
||||
match llm_model:
|
||||
case 'gpt-4o' | 'gpt-4o-mini':
|
||||
tool_calling_supported = True
|
||||
processing_chunk_size = 10000
|
||||
processing_chunk_overlap = 200
|
||||
processing_min_chunk_size = 8000
|
||||
processing_max_chunk_size = 12000
|
||||
case _:
|
||||
raise Exception(f'Error setting model variables for tenant {tenant.id} '
|
||||
f'error: Invalid chat model')
|
||||
case 'anthropic':
|
||||
api_key = current_app.config.get('ANTHROPIC_API_KEY')
|
||||
# Anthropic does not have the same 'generic' model names as OpenAI
|
||||
llm_model_ext = current_app.config.get('ANTHROPIC_LLM_VERSIONS').get(llm_model)
|
||||
model_variables['llm'] = ChatAnthropic(api_key=api_key,
|
||||
model=llm_model_ext,
|
||||
temperature=model_variables['RAG_temperature'])
|
||||
model_variables['llm_no_rag'] = ChatAnthropic(api_key=api_key,
|
||||
model=llm_model_ext,
|
||||
temperature=model_variables['RAG_temperature'])
|
||||
tool_calling_supported = True
|
||||
processing_chunk_size = 10000
|
||||
processing_chunk_overlap = 200
|
||||
processing_min_chunk_size = 8000
|
||||
processing_max_chunk_size = 12000
|
||||
case _:
|
||||
raise Exception(f'Error setting model variables for tenant {tenant.id} '
|
||||
f'error: Invalid chat provider')
|
||||
self._variables['transcription_model'] = 'whisper-1'
|
||||
|
||||
model_variables['processing_chunk_size'] = processing_chunk_size
|
||||
model_variables['processing_chunk_overlap'] = processing_chunk_overlap
|
||||
model_variables['processing_min_chunk_size'] = processing_min_chunk_size
|
||||
model_variables['processing_max_chunk_size'] = processing_max_chunk_size
|
||||
return self._transcription_client
|
||||
|
||||
if tool_calling_supported:
|
||||
model_variables['cited_answer_cls'] = CitedAnswer
|
||||
@property
|
||||
def embedding_db_model(self):
|
||||
if self._embedding_db_model is None:
|
||||
self._embedding_db_model = self.get_embedding_db_model()
|
||||
return self._embedding_db_model
|
||||
|
||||
templates = current_app.config['PROMPT_TEMPLATES'][f'{llm_provider}.{llm_model}']
|
||||
model_variables['summary_template'] = templates['summary']
|
||||
model_variables['rag_template'] = templates['rag']
|
||||
model_variables['history_template'] = templates['history']
|
||||
model_variables['encyclopedia_template'] = templates['encyclopedia']
|
||||
model_variables['transcript_template'] = templates['transcript']
|
||||
model_variables['html_parse_template'] = templates['html_parse']
|
||||
model_variables['pdf_parse_template'] = templates['pdf_parse']
|
||||
def get_embedding_db_model(self):
|
||||
current_app.logger.debug("In get_embedding_db_model")
|
||||
if self._embedding_db_model is None:
|
||||
self._embedding_db_model = EmbeddingSmallOpenAI \
|
||||
if self._variables['embedding_model'] == 'text-embedding-3-small' \
|
||||
else EmbeddingLargeOpenAI
|
||||
current_app.logger.debug(f"Embedding DB Model: {self._embedding_db_model}")
|
||||
return self._embedding_db_model
|
||||
|
||||
model_variables['annotation_chunk_length'] = current_app.config['ANNOTATION_TEXT_CHUNK_LENGTH'][tenant.llm_model]
|
||||
def get_prompt_template(self, template_name: str) -> str:
|
||||
current_app.logger.info(f"Getting prompt template for {template_name}")
|
||||
if template_name not in self._prompt_templates:
|
||||
self._prompt_templates[template_name] = self._load_prompt_template(template_name)
|
||||
return self._prompt_templates[template_name]
|
||||
|
||||
# Transcription Client Variables.
|
||||
# Using Groq
|
||||
# api_key = current_app.config.get('GROQ_API_KEY')
|
||||
# model_variables['transcription_client'] = Groq(api_key=api_key)
|
||||
# model_variables['transcription_model'] = 'whisper-large-v3'
|
||||
def _load_prompt_template(self, template_name: str) -> str:
|
||||
# In the future, this method will make an API call to Portkey
|
||||
# For now, we'll simulate it with a placeholder implementation
|
||||
# You can replace this with your current prompt loading logic
|
||||
return self._variables['templates'][template_name]
|
||||
|
||||
# Using OpenAI for transcriptions
|
||||
portkey_metadata = {'tenant_id': str(tenant.id)}
|
||||
portkey_headers = createHeaders(api_key=current_app.config.get('PORTKEY_API_KEY'),
|
||||
metadata=portkey_metadata,
|
||||
provider='openai'
|
||||
)
|
||||
api_key = current_app.config.get('OPENAI_API_KEY')
|
||||
model_variables['transcription_client'] = OpenAI(api_key=api_key,
|
||||
base_url=PORTKEY_GATEWAY_URL,
|
||||
default_headers=portkey_headers)
|
||||
model_variables['transcription_model'] = 'whisper-1'
|
||||
def __getitem__(self, key: str) -> Any:
|
||||
current_app.logger.debug(f"ModelVariables: Getting {key}")
|
||||
# Support older template names (suffix = _template)
|
||||
if key.endswith('_template'):
|
||||
key = key[:-len('_template')]
|
||||
current_app.logger.debug(f"ModelVariables: Getting modified {key}")
|
||||
if key == 'embedding_model':
|
||||
return self.embedding_model
|
||||
elif key == 'embedding_db_model':
|
||||
return self.embedding_db_model
|
||||
elif key == 'llm':
|
||||
return self.llm
|
||||
elif key == 'llm_no_rag':
|
||||
return self.llm_no_rag
|
||||
elif key == 'transcription_client':
|
||||
return self.transcription_client
|
||||
elif key in self._variables.get('prompt_templates', []):
|
||||
return self.get_prompt_template(key)
|
||||
return self._variables.get(key)
|
||||
|
||||
def __setitem__(self, key: str, value: Any) -> None:
|
||||
self._variables[key] = value
|
||||
|
||||
def __delitem__(self, key: str) -> None:
|
||||
del self._variables[key]
|
||||
|
||||
def __iter__(self) -> Iterator[str]:
|
||||
return iter(self._variables)
|
||||
|
||||
def __len__(self):
|
||||
return len(self._variables)
|
||||
|
||||
def get(self, key: str, default: Any = None) -> Any:
|
||||
return self.__getitem__(key) or default
|
||||
|
||||
def update(self, **kwargs) -> None:
|
||||
self._variables.update(kwargs)
|
||||
|
||||
def items(self):
|
||||
return self._variables.items()
|
||||
|
||||
def keys(self):
|
||||
return self._variables.keys()
|
||||
|
||||
def values(self):
|
||||
return self._variables.values()
|
||||
|
||||
|
||||
def select_model_variables(tenant):
|
||||
model_variables = ModelVariables(tenant=tenant)
|
||||
return model_variables
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user