- turned model_variables into a class with lazy loading

- some improvements to Healthchecks
This commit is contained in:
Josako
2024-09-24 10:48:52 +02:00
parent 67bdeac434
commit a740c96630
16 changed files with 382 additions and 191 deletions

View File

@@ -5,14 +5,14 @@ from flask import current_app
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_anthropic import ChatAnthropic
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain.prompts import ChatPromptTemplate
import ast
from typing import List
from typing import List, Any, Iterator
from collections.abc import MutableMapping
from openai import OpenAI
# from groq import Groq
from portkey_ai import createHeaders, PORTKEY_GATEWAY_URL
from common.models.document import EmbeddingSmallOpenAI, EmbeddingLargeOpenAI
from common.models.user import Tenant
from config.model_config import MODEL_CONFIG
class CitedAnswer(BaseModel):
@@ -36,180 +36,221 @@ def set_language_prompt_template(cls, language_prompt):
cls.__doc__ = language_prompt
def select_model_variables(tenant):
embedding_provider = tenant.embedding_model.rsplit('.', 1)[0]
embedding_model = tenant.embedding_model.rsplit('.', 1)[1]
class ModelVariables(MutableMapping):
def __init__(self, tenant: Tenant):
self.tenant = tenant
self._variables = self._initialize_variables()
self._embedding_model = None
self._llm = None
self._llm_no_rag = None
self._transcription_client = None
self._prompt_templates = {}
self._embedding_db_model = None
llm_provider = tenant.llm_model.rsplit('.', 1)[0]
llm_model = tenant.llm_model.rsplit('.', 1)[1]
def _initialize_variables(self):
variables = {}
# Set model variables
model_variables = {}
if tenant.es_k:
model_variables['k'] = tenant.es_k
else:
model_variables['k'] = 5
# We initialize the variables that are available knowing the tenant. For the other, we will apply 'lazy loading'
variables['k'] = self.tenant.es_k or 5
variables['similarity_threshold'] = self.tenant.es_similarity_threshold or 0.7
variables['RAG_temperature'] = self.tenant.chat_RAG_temperature or 0.3
variables['no_RAG_temperature'] = self.tenant.chat_no_RAG_temperature or 0.5
variables['embed_tuning'] = self.tenant.embed_tuning or False
variables['rag_tuning'] = self.tenant.rag_tuning or False
variables['rag_context'] = self.tenant.rag_context or " "
if tenant.es_similarity_threshold:
model_variables['similarity_threshold'] = tenant.es_similarity_threshold
else:
model_variables['similarity_threshold'] = 0.7
# Set HTML Chunking Variables
variables['html_tags'] = self.tenant.html_tags
variables['html_end_tags'] = self.tenant.html_end_tags
variables['html_included_elements'] = self.tenant.html_included_elements
variables['html_excluded_elements'] = self.tenant.html_excluded_elements
variables['html_excluded_classes'] = self.tenant.html_excluded_classes
if tenant.chat_RAG_temperature:
model_variables['RAG_temperature'] = tenant.chat_RAG_temperature
else:
model_variables['RAG_temperature'] = 0.3
# Set Chunk Size variables
variables['min_chunk_size'] = self.tenant.min_chunk_size
variables['max_chunk_size'] = self.tenant.max_chunk_size
if tenant.chat_no_RAG_temperature:
model_variables['no_RAG_temperature'] = tenant.chat_no_RAG_temperature
else:
model_variables['no_RAG_temperature'] = 0.5
# Set model providers
variables['embedding_provider'], variables['embedding_model'] = self.tenant.embedding_model.rsplit('.', 1)
variables['llm_provider'], variables['llm_model'] = self.tenant.llm_model.rsplit('.', 1)
variables["templates"] = current_app.config['PROMPT_TEMPLATES'][(f"{variables['llm_provider']}."
f"{variables['llm_model']}")]
current_app.logger.info(f"Loaded prompt templates: \n")
current_app.logger.info(f"{variables['templates']}")
# Set Tuning variables
if tenant.embed_tuning:
model_variables['embed_tuning'] = tenant.embed_tuning
else:
model_variables['embed_tuning'] = False
# Set model-specific configurations
model_config = MODEL_CONFIG.get(variables['llm_provider'], {}).get(variables['llm_model'], {})
variables.update(model_config)
if tenant.rag_tuning:
model_variables['rag_tuning'] = tenant.rag_tuning
else:
model_variables['rag_tuning'] = False
variables['annotation_chunk_length'] = current_app.config['ANNOTATION_TEXT_CHUNK_LENGTH'][self.tenant.llm_model]
if tenant.rag_context:
model_variables['rag_context'] = tenant.rag_context
else:
model_variables['rag_context'] = " "
if variables['tool_calling_supported']:
variables['cited_answer_cls'] = CitedAnswer
# Set HTML Chunking Variables
model_variables['html_tags'] = tenant.html_tags
model_variables['html_end_tags'] = tenant.html_end_tags
model_variables['html_included_elements'] = tenant.html_included_elements
model_variables['html_excluded_elements'] = tenant.html_excluded_elements
model_variables['html_excluded_classes'] = tenant.html_excluded_classes
return variables
# Set Chunk Size variables
model_variables['min_chunk_size'] = tenant.min_chunk_size
model_variables['max_chunk_size'] = tenant.max_chunk_size
@property
def embedding_model(self):
if self._embedding_model is None:
environment = os.getenv('FLASK_ENV', 'development')
portkey_metadata = {'tenant_id': str(self.tenant.id), 'environment': environment}
environment = os.getenv('FLASK_ENV', 'development')
portkey_metadata = {'tenant_id': str(tenant.id), 'environment': environment}
if self._variables['embedding_provider'] == 'openai':
portkey_headers = createHeaders(api_key=os.getenv('PORTKEY_API_KEY'),
provider='openai',
metadata=portkey_metadata)
api_key = os.getenv('OPENAI_API_KEY')
model = self._variables['embedding_model']
self._embedding_model = OpenAIEmbeddings(api_key=api_key,
model=model,
base_url=PORTKEY_GATEWAY_URL,
default_headers=portkey_headers)
self._embedding_db_model = EmbeddingSmallOpenAI \
if model == 'text-embedding-3-small' \
else EmbeddingLargeOpenAI
else:
raise ValueError(f"Invalid embedding provider: {self._variables['embedding_provider']}")
# Set Embedding variables
match embedding_provider:
case 'openai':
portkey_headers = createHeaders(api_key=current_app.config.get('PORTKEY_API_KEY'),
provider='openai',
metadata=portkey_metadata)
match embedding_model:
case 'text-embedding-3-small':
api_key = current_app.config.get('OPENAI_API_KEY')
model_variables['embedding_model'] = OpenAIEmbeddings(api_key=api_key,
model='text-embedding-3-small',
base_url=PORTKEY_GATEWAY_URL,
default_headers=portkey_headers
)
model_variables['embedding_db_model'] = EmbeddingSmallOpenAI
case 'text-embedding-3-large':
api_key = current_app.config.get('OPENAI_API_KEY')
model_variables['embedding_model'] = OpenAIEmbeddings(api_key=api_key,
model='text-embedding-3-large',
base_url=PORTKEY_GATEWAY_URL,
default_headers=portkey_headers
)
model_variables['embedding_db_model'] = EmbeddingLargeOpenAI
case _:
raise Exception(f'Error setting model variables for tenant {tenant.id} '
f'error: Invalid embedding model')
case _:
raise Exception(f'Error setting model variables for tenant {tenant.id} '
f'error: Invalid embedding provider')
return self._embedding_model
# Set Chat model variables
match llm_provider:
case 'openai':
portkey_headers = createHeaders(api_key=current_app.config.get('PORTKEY_API_KEY'),
@property
def llm(self):
if self._llm is None:
self._initialize_llm()
return self._llm
@property
def llm_no_rag(self):
if self._llm_no_rag is None:
self._initialize_llm()
return self._llm_no_rag
def _initialize_llm(self):
environment = os.getenv('FLASK_ENV', 'development')
portkey_metadata = {'tenant_id': str(self.tenant.id), 'environment': environment}
if self._variables['llm_provider'] == 'openai':
portkey_headers = createHeaders(api_key=os.getenv('PORTKEY_API_KEY'),
metadata=portkey_metadata,
provider='openai')
tool_calling_supported = False
api_key = current_app.config.get('OPENAI_API_KEY')
model_variables['llm'] = ChatOpenAI(api_key=api_key,
model=llm_model,
temperature=model_variables['RAG_temperature'],
api_key = os.getenv('OPENAI_API_KEY')
self._llm = ChatOpenAI(api_key=api_key,
model=self._variables['llm_model'],
temperature=self._variables['RAG_temperature'],
base_url=PORTKEY_GATEWAY_URL,
default_headers=portkey_headers)
self._llm_no_rag = ChatOpenAI(api_key=api_key,
model=self._variables['llm_model'],
temperature=self._variables['no_RAG_temperature'],
base_url=PORTKEY_GATEWAY_URL,
default_headers=portkey_headers)
self._variables['tool_calling_supported'] = self._variables['llm_model'] in ['gpt-4o', 'gpt-4o-mini']
elif self._variables['llm_provider'] == 'anthropic':
api_key = os.getenv('ANTHROPIC_API_KEY')
llm_model_ext = os.getenv('ANTHROPIC_LLM_VERSIONS', {}).get(self._variables['llm_model'])
self._llm = ChatAnthropic(api_key=api_key,
model=llm_model_ext,
temperature=self._variables['RAG_temperature'])
self._llm_no_rag = ChatAnthropic(api_key=api_key,
model=llm_model_ext,
temperature=self._variables['RAG_temperature'])
self._variables['tool_calling_supported'] = True
else:
raise ValueError(f"Invalid chat provider: {self._variables['llm_provider']}")
@property
def transcription_client(self):
if self._transcription_client is None:
environment = os.getenv('FLASK_ENV', 'development')
portkey_metadata = {'tenant_id': str(self.tenant.id), 'environment': environment}
portkey_headers = createHeaders(api_key=os.getenv('PORTKEY_API_KEY'),
metadata=portkey_metadata,
provider='openai')
api_key = os.getenv('OPENAI_API_KEY')
self._transcription_client = OpenAI(api_key=api_key,
base_url=PORTKEY_GATEWAY_URL,
default_headers=portkey_headers)
model_variables['llm_no_rag'] = ChatOpenAI(api_key=api_key,
model=llm_model,
temperature=model_variables['no_RAG_temperature'],
base_url=PORTKEY_GATEWAY_URL,
default_headers=portkey_headers)
tool_calling_supported = False
match llm_model:
case 'gpt-4o' | 'gpt-4o-mini':
tool_calling_supported = True
processing_chunk_size = 10000
processing_chunk_overlap = 200
processing_min_chunk_size = 8000
processing_max_chunk_size = 12000
case _:
raise Exception(f'Error setting model variables for tenant {tenant.id} '
f'error: Invalid chat model')
case 'anthropic':
api_key = current_app.config.get('ANTHROPIC_API_KEY')
# Anthropic does not have the same 'generic' model names as OpenAI
llm_model_ext = current_app.config.get('ANTHROPIC_LLM_VERSIONS').get(llm_model)
model_variables['llm'] = ChatAnthropic(api_key=api_key,
model=llm_model_ext,
temperature=model_variables['RAG_temperature'])
model_variables['llm_no_rag'] = ChatAnthropic(api_key=api_key,
model=llm_model_ext,
temperature=model_variables['RAG_temperature'])
tool_calling_supported = True
processing_chunk_size = 10000
processing_chunk_overlap = 200
processing_min_chunk_size = 8000
processing_max_chunk_size = 12000
case _:
raise Exception(f'Error setting model variables for tenant {tenant.id} '
f'error: Invalid chat provider')
self._variables['transcription_model'] = 'whisper-1'
model_variables['processing_chunk_size'] = processing_chunk_size
model_variables['processing_chunk_overlap'] = processing_chunk_overlap
model_variables['processing_min_chunk_size'] = processing_min_chunk_size
model_variables['processing_max_chunk_size'] = processing_max_chunk_size
return self._transcription_client
if tool_calling_supported:
model_variables['cited_answer_cls'] = CitedAnswer
@property
def embedding_db_model(self):
if self._embedding_db_model is None:
self._embedding_db_model = self.get_embedding_db_model()
return self._embedding_db_model
templates = current_app.config['PROMPT_TEMPLATES'][f'{llm_provider}.{llm_model}']
model_variables['summary_template'] = templates['summary']
model_variables['rag_template'] = templates['rag']
model_variables['history_template'] = templates['history']
model_variables['encyclopedia_template'] = templates['encyclopedia']
model_variables['transcript_template'] = templates['transcript']
model_variables['html_parse_template'] = templates['html_parse']
model_variables['pdf_parse_template'] = templates['pdf_parse']
def get_embedding_db_model(self):
current_app.logger.debug("In get_embedding_db_model")
if self._embedding_db_model is None:
self._embedding_db_model = EmbeddingSmallOpenAI \
if self._variables['embedding_model'] == 'text-embedding-3-small' \
else EmbeddingLargeOpenAI
current_app.logger.debug(f"Embedding DB Model: {self._embedding_db_model}")
return self._embedding_db_model
model_variables['annotation_chunk_length'] = current_app.config['ANNOTATION_TEXT_CHUNK_LENGTH'][tenant.llm_model]
def get_prompt_template(self, template_name: str) -> str:
current_app.logger.info(f"Getting prompt template for {template_name}")
if template_name not in self._prompt_templates:
self._prompt_templates[template_name] = self._load_prompt_template(template_name)
return self._prompt_templates[template_name]
# Transcription Client Variables.
# Using Groq
# api_key = current_app.config.get('GROQ_API_KEY')
# model_variables['transcription_client'] = Groq(api_key=api_key)
# model_variables['transcription_model'] = 'whisper-large-v3'
def _load_prompt_template(self, template_name: str) -> str:
# In the future, this method will make an API call to Portkey
# For now, we'll simulate it with a placeholder implementation
# You can replace this with your current prompt loading logic
return self._variables['templates'][template_name]
# Using OpenAI for transcriptions
portkey_metadata = {'tenant_id': str(tenant.id)}
portkey_headers = createHeaders(api_key=current_app.config.get('PORTKEY_API_KEY'),
metadata=portkey_metadata,
provider='openai'
)
api_key = current_app.config.get('OPENAI_API_KEY')
model_variables['transcription_client'] = OpenAI(api_key=api_key,
base_url=PORTKEY_GATEWAY_URL,
default_headers=portkey_headers)
model_variables['transcription_model'] = 'whisper-1'
def __getitem__(self, key: str) -> Any:
current_app.logger.debug(f"ModelVariables: Getting {key}")
# Support older template names (suffix = _template)
if key.endswith('_template'):
key = key[:-len('_template')]
current_app.logger.debug(f"ModelVariables: Getting modified {key}")
if key == 'embedding_model':
return self.embedding_model
elif key == 'embedding_db_model':
return self.embedding_db_model
elif key == 'llm':
return self.llm
elif key == 'llm_no_rag':
return self.llm_no_rag
elif key == 'transcription_client':
return self.transcription_client
elif key in self._variables.get('prompt_templates', []):
return self.get_prompt_template(key)
return self._variables.get(key)
def __setitem__(self, key: str, value: Any) -> None:
self._variables[key] = value
def __delitem__(self, key: str) -> None:
del self._variables[key]
def __iter__(self) -> Iterator[str]:
return iter(self._variables)
def __len__(self):
return len(self._variables)
def get(self, key: str, default: Any = None) -> Any:
return self.__getitem__(key) or default
def update(self, **kwargs) -> None:
self._variables.update(kwargs)
def items(self):
return self._variables.items()
def keys(self):
return self._variables.keys()
def values(self):
return self._variables.values()
def select_model_variables(tenant):
model_variables = ModelVariables(tenant=tenant)
return model_variables