- Improvements on audio processing to limit CPU and memory usage
- Removed Portkey from the equation, and defined explicit monitoring using Langchain native code - Optimization of Business Event logging
This commit is contained in:
49
common/langchain/llm_metrics_handler.py
Normal file
49
common/langchain/llm_metrics_handler.py
Normal file
@@ -0,0 +1,49 @@
|
||||
import time
|
||||
from langchain.callbacks.base import BaseCallbackHandler
|
||||
from typing import Dict, Any, List
|
||||
from langchain.schema import LLMResult
|
||||
from common.utils.business_event_context import current_event
|
||||
from flask import current_app
|
||||
|
||||
|
||||
class LLMMetricsHandler(BaseCallbackHandler):
|
||||
def __init__(self):
|
||||
self.total_tokens: int = 0
|
||||
self.prompt_tokens: int = 0
|
||||
self.completion_tokens: int = 0
|
||||
self.start_time: float = 0
|
||||
self.end_time: float = 0
|
||||
self.total_time: float = 0
|
||||
|
||||
def reset(self):
|
||||
self.total_tokens = 0
|
||||
self.prompt_tokens = 0
|
||||
self.completion_tokens = 0
|
||||
self.start_time = 0
|
||||
self.end_time = 0
|
||||
self.total_time = 0
|
||||
|
||||
def on_llm_start(self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) -> None:
|
||||
self.start_time = time.time()
|
||||
|
||||
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
|
||||
self.end_time = time.time()
|
||||
self.total_time = self.end_time - self.start_time
|
||||
|
||||
usage = response.llm_output.get('token_usage', {})
|
||||
self.prompt_tokens += usage.get('prompt_tokens', 0)
|
||||
self.completion_tokens += usage.get('completion_tokens', 0)
|
||||
self.total_tokens = self.prompt_tokens + self.completion_tokens
|
||||
|
||||
metrics = self.get_metrics()
|
||||
current_event.log_llm_metrics(metrics)
|
||||
self.reset() # Reset for the next call
|
||||
|
||||
def get_metrics(self) -> Dict[str, int | float]:
|
||||
return {
|
||||
'total_tokens': self.total_tokens,
|
||||
'prompt_tokens': self.prompt_tokens,
|
||||
'completion_tokens': self.completion_tokens,
|
||||
'time_elapsed': self.total_time,
|
||||
'interaction_type': 'LLM',
|
||||
}
|
||||
51
common/langchain/tracked_openai_embeddings.py
Normal file
51
common/langchain/tracked_openai_embeddings.py
Normal file
@@ -0,0 +1,51 @@
|
||||
from langchain_openai import OpenAIEmbeddings
|
||||
from typing import List, Any
|
||||
import time
|
||||
from common.utils.business_event_context import current_event
|
||||
|
||||
|
||||
class TrackedOpenAIEmbeddings(OpenAIEmbeddings):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def embed_documents(self, texts: list[str]) -> list[list[float]]:
|
||||
start_time = time.time()
|
||||
result = super().embed_documents(texts)
|
||||
end_time = time.time()
|
||||
|
||||
# Estimate token usage (OpenAI uses tiktoken for this)
|
||||
import tiktoken
|
||||
enc = tiktoken.encoding_for_model(self.model)
|
||||
total_tokens = sum(len(enc.encode(text)) for text in texts)
|
||||
|
||||
metrics = {
|
||||
'total_tokens': total_tokens,
|
||||
'prompt_tokens': total_tokens, # For embeddings, all tokens are prompt tokens
|
||||
'completion_tokens': 0,
|
||||
'time_elapsed': end_time - start_time,
|
||||
'interaction_type': 'Embedding',
|
||||
}
|
||||
current_event.log_llm_metrics(metrics)
|
||||
|
||||
return result
|
||||
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
start_time = time.time()
|
||||
result = super().embed_query(text)
|
||||
end_time = time.time()
|
||||
|
||||
# Estimate token usage
|
||||
import tiktoken
|
||||
enc = tiktoken.encoding_for_model(self.model)
|
||||
total_tokens = len(enc.encode(text))
|
||||
|
||||
metrics = {
|
||||
'total_tokens': total_tokens,
|
||||
'prompt_tokens': total_tokens,
|
||||
'completion_tokens': 0,
|
||||
'time_elapsed': end_time - start_time,
|
||||
'interaction_type': 'Embedding',
|
||||
}
|
||||
current_event.log_llm_metrics(metrics)
|
||||
|
||||
return result
|
||||
27
common/langchain/tracked_transcribe.py
Normal file
27
common/langchain/tracked_transcribe.py
Normal file
@@ -0,0 +1,27 @@
|
||||
import time
|
||||
from common.utils.business_event_context import current_event
|
||||
|
||||
|
||||
def tracked_transcribe(client, *args, **kwargs):
|
||||
start_time = time.time()
|
||||
|
||||
# Extract the file and model from kwargs if present, otherwise use defaults
|
||||
file = kwargs.get('file')
|
||||
model = kwargs.get('model', 'whisper-1')
|
||||
duration = kwargs.pop('duration', 600)
|
||||
|
||||
result = client.audio.transcriptions.create(*args, **kwargs)
|
||||
end_time = time.time()
|
||||
|
||||
# Token usage for transcriptions is actually the duration in seconds we pass, as the whisper model is priced per second transcribed
|
||||
|
||||
metrics = {
|
||||
'total_tokens': duration,
|
||||
'prompt_tokens': 0, # For transcriptions, all tokens are considered "completion"
|
||||
'completion_tokens': duration,
|
||||
'time_elapsed': end_time - start_time,
|
||||
'interaction_type': 'ASR',
|
||||
}
|
||||
current_event.log_llm_metrics(metrics)
|
||||
|
||||
return result
|
||||
@@ -17,5 +17,11 @@ class BusinessEventLog(db.Model):
|
||||
chat_session_id = db.Column(db.String(50))
|
||||
interaction_id = db.Column(db.Integer)
|
||||
environment = db.Column(db.String(20))
|
||||
llm_metrics_total_tokens = db.Column(db.Integer)
|
||||
llm_metrics_prompt_tokens = db.Column(db.Integer)
|
||||
llm_metrics_completion_tokens = db.Column(db.Integer)
|
||||
llm_metrics_total_time = db.Column(db.Float)
|
||||
llm_metrics_call_count = db.Column(db.Integer)
|
||||
llm_interaction_type = db.Column(db.String(20))
|
||||
message = db.Column(db.Text)
|
||||
# Add any other fields relevant for invoicing or warnings
|
||||
|
||||
@@ -30,6 +30,14 @@ class BusinessEvent:
|
||||
self.environment = os.environ.get("FLASK_ENV", "development")
|
||||
self.span_counter = 0
|
||||
self.spans = []
|
||||
self.llm_metrics = {
|
||||
'total_tokens': 0,
|
||||
'prompt_tokens': 0,
|
||||
'completion_tokens': 0,
|
||||
'total_time': 0,
|
||||
'call_count': 0,
|
||||
'interaction_type': None
|
||||
}
|
||||
|
||||
def update_attribute(self, attribute: str, value: any):
|
||||
if hasattr(self, attribute):
|
||||
@@ -37,6 +45,22 @@ class BusinessEvent:
|
||||
else:
|
||||
raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{attribute}'")
|
||||
|
||||
def update_llm_metrics(self, metrics: dict):
|
||||
self.llm_metrics['total_tokens'] += metrics['total_tokens']
|
||||
self.llm_metrics['prompt_tokens'] += metrics['prompt_tokens']
|
||||
self.llm_metrics['completion_tokens'] += metrics['completion_tokens']
|
||||
self.llm_metrics['total_time'] += metrics['time_elapsed']
|
||||
self.llm_metrics['call_count'] += 1
|
||||
self.llm_metrics['interaction_type'] = metrics['interaction_type']
|
||||
|
||||
def reset_llm_metrics(self):
|
||||
self.llm_metrics['total_tokens'] = 0
|
||||
self.llm_metrics['prompt_tokens'] = 0
|
||||
self.llm_metrics['completion_tokens'] = 0
|
||||
self.llm_metrics['total_time'] = 0
|
||||
self.llm_metrics['call_count'] = 0
|
||||
self.llm_metrics['interaction_type'] = None
|
||||
|
||||
@contextmanager
|
||||
def create_span(self, span_name: str):
|
||||
# The create_span method is designed to be used as a context manager. We want to perform some actions when
|
||||
@@ -61,6 +85,9 @@ class BusinessEvent:
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
if self.llm_metrics['call_count'] > 0:
|
||||
self.log_final_metrics()
|
||||
self.reset_llm_metrics()
|
||||
self.log(f"Ending span {span_name}")
|
||||
# Restore the previous span info
|
||||
if self.spans:
|
||||
@@ -82,7 +109,7 @@ class BusinessEvent:
|
||||
'document_version_id': self.document_version_id,
|
||||
'chat_session_id': self.chat_session_id,
|
||||
'interaction_id': self.interaction_id,
|
||||
'environment': self.environment
|
||||
'environment': self.environment,
|
||||
}
|
||||
# log to Graylog
|
||||
getattr(logger, level)(message, extra=log_data)
|
||||
@@ -105,10 +132,108 @@ class BusinessEvent:
|
||||
db.session.add(event_log)
|
||||
db.session.commit()
|
||||
|
||||
def log_llm_metrics(self, metrics: dict, level: str = 'info'):
|
||||
self.update_llm_metrics(metrics)
|
||||
message = "LLM Metrics"
|
||||
logger = logging.getLogger('business_events')
|
||||
log_data = {
|
||||
'event_type': self.event_type,
|
||||
'tenant_id': self.tenant_id,
|
||||
'trace_id': self.trace_id,
|
||||
'span_id': self.span_id,
|
||||
'span_name': self.span_name,
|
||||
'parent_span_id': self.parent_span_id,
|
||||
'document_version_id': self.document_version_id,
|
||||
'chat_session_id': self.chat_session_id,
|
||||
'interaction_id': self.interaction_id,
|
||||
'environment': self.environment,
|
||||
'llm_metrics_total_tokens': metrics['total_tokens'],
|
||||
'llm_metrics_prompt_tokens': metrics['prompt_tokens'],
|
||||
'llm_metrics_completion_tokens': metrics['completion_tokens'],
|
||||
'llm_metrics_total_time': metrics['time_elapsed'],
|
||||
'llm_interaction_type': metrics['interaction_type'],
|
||||
}
|
||||
# log to Graylog
|
||||
getattr(logger, level)(message, extra=log_data)
|
||||
|
||||
# Log to database
|
||||
event_log = BusinessEventLog(
|
||||
timestamp=dt.now(tz=tz.utc),
|
||||
event_type=self.event_type,
|
||||
tenant_id=self.tenant_id,
|
||||
trace_id=self.trace_id,
|
||||
span_id=self.span_id,
|
||||
span_name=self.span_name,
|
||||
parent_span_id=self.parent_span_id,
|
||||
document_version_id=self.document_version_id,
|
||||
chat_session_id=self.chat_session_id,
|
||||
interaction_id=self.interaction_id,
|
||||
environment=self.environment,
|
||||
llm_metrics_total_tokens=metrics['total_tokens'],
|
||||
llm_metrics_prompt_tokens=metrics['prompt_tokens'],
|
||||
llm_metrics_completion_tokens=metrics['completion_tokens'],
|
||||
llm_metrics_total_time=metrics['time_elapsed'],
|
||||
llm_interaction_type=metrics['interaction_type'],
|
||||
message=message
|
||||
)
|
||||
db.session.add(event_log)
|
||||
db.session.commit()
|
||||
|
||||
def log_final_metrics(self, level: str = 'info'):
|
||||
logger = logging.getLogger('business_events')
|
||||
message = "Final LLM Metrics"
|
||||
log_data = {
|
||||
'event_type': self.event_type,
|
||||
'tenant_id': self.tenant_id,
|
||||
'trace_id': self.trace_id,
|
||||
'span_id': self.span_id,
|
||||
'span_name': self.span_name,
|
||||
'parent_span_id': self.parent_span_id,
|
||||
'document_version_id': self.document_version_id,
|
||||
'chat_session_id': self.chat_session_id,
|
||||
'interaction_id': self.interaction_id,
|
||||
'environment': self.environment,
|
||||
'llm_metrics_total_tokens': self.llm_metrics['total_tokens'],
|
||||
'llm_metrics_prompt_tokens': self.llm_metrics['prompt_tokens'],
|
||||
'llm_metrics_completion_tokens': self.llm_metrics['completion_tokens'],
|
||||
'llm_metrics_total_time': self.llm_metrics['total_time'],
|
||||
'llm_metrics_call_count': self.llm_metrics['call_count'],
|
||||
'llm_interaction_type': self.llm_metrics['interaction_type'],
|
||||
}
|
||||
# log to Graylog
|
||||
getattr(logger, level)(message, extra=log_data)
|
||||
|
||||
# Log to database
|
||||
event_log = BusinessEventLog(
|
||||
timestamp=dt.now(tz=tz.utc),
|
||||
event_type=self.event_type,
|
||||
tenant_id=self.tenant_id,
|
||||
trace_id=self.trace_id,
|
||||
span_id=self.span_id,
|
||||
span_name=self.span_name,
|
||||
parent_span_id=self.parent_span_id,
|
||||
document_version_id=self.document_version_id,
|
||||
chat_session_id=self.chat_session_id,
|
||||
interaction_id=self.interaction_id,
|
||||
environment=self.environment,
|
||||
llm_metrics_total_tokens=self.llm_metrics['total_tokens'],
|
||||
llm_metrics_prompt_tokens=self.llm_metrics['prompt_tokens'],
|
||||
llm_metrics_completion_tokens=self.llm_metrics['completion_tokens'],
|
||||
llm_metrics_total_time=self.llm_metrics['total_time'],
|
||||
llm_metrics_call_count=self.llm_metrics['call_count'],
|
||||
llm_interaction_type=self.llm_metrics['interaction_type'],
|
||||
message=message
|
||||
)
|
||||
db.session.add(event_log)
|
||||
db.session.commit()
|
||||
|
||||
def __enter__(self):
|
||||
self.log(f'Starting Trace for {self.event_type}')
|
||||
return BusinessEventContext(self).__enter__()
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
if self.llm_metrics['call_count'] > 0:
|
||||
self.log_final_metrics()
|
||||
self.reset_llm_metrics()
|
||||
self.log(f'Ending Trace for {self.event_type}')
|
||||
return BusinessEventContext(self).__exit__(exc_type, exc_val, exc_tb)
|
||||
|
||||
@@ -11,6 +11,9 @@ from openai import OpenAI
|
||||
from portkey_ai import createHeaders, PORTKEY_GATEWAY_URL
|
||||
from portkey_ai.langchain.portkey_langchain_callback_handler import LangchainCallbackHandler
|
||||
|
||||
from common.langchain.llm_metrics_handler import LLMMetricsHandler
|
||||
from common.langchain.tracked_openai_embeddings import TrackedOpenAIEmbeddings
|
||||
from common.langchain.tracked_transcribe import tracked_transcribe
|
||||
from common.models.document import EmbeddingSmallOpenAI, EmbeddingLargeOpenAI
|
||||
from common.models.user import Tenant
|
||||
from config.model_config import MODEL_CONFIG
|
||||
@@ -48,6 +51,8 @@ class ModelVariables(MutableMapping):
|
||||
self._transcription_client = None
|
||||
self._prompt_templates = {}
|
||||
self._embedding_db_model = None
|
||||
self.llm_metrics_handler = LLMMetricsHandler()
|
||||
self._transcription_client = None
|
||||
|
||||
def _initialize_variables(self):
|
||||
variables = {}
|
||||
@@ -89,26 +94,20 @@ class ModelVariables(MutableMapping):
|
||||
if variables['tool_calling_supported']:
|
||||
variables['cited_answer_cls'] = CitedAnswer
|
||||
|
||||
variables['max_compression_duration'] = current_app.config['MAX_COMPRESSION_DURATION']
|
||||
variables['max_transcription_duration'] = current_app.config['MAX_TRANSCRIPTION_DURATION']
|
||||
variables['compression_cpu_limit'] = current_app.config['COMPRESSION_CPU_LIMIT']
|
||||
variables['compression_process_delay'] = current_app.config['COMPRESSION_PROCESS_DELAY']
|
||||
|
||||
return variables
|
||||
|
||||
@property
|
||||
def embedding_model(self):
|
||||
portkey_metadata = self.get_portkey_metadata()
|
||||
|
||||
portkey_headers = createHeaders(api_key=os.getenv('PORTKEY_API_KEY'),
|
||||
provider=self._variables['embedding_provider'],
|
||||
metadata=portkey_metadata,
|
||||
trace_id=current_event.trace_id,
|
||||
span_id=current_event.span_id,
|
||||
span_name=current_event.span_name,
|
||||
parent_span_id=current_event.parent_span_id
|
||||
)
|
||||
api_key = os.getenv('OPENAI_API_KEY')
|
||||
model = self._variables['embedding_model']
|
||||
self._embedding_model = OpenAIEmbeddings(api_key=api_key,
|
||||
model=model,
|
||||
base_url=PORTKEY_GATEWAY_URL,
|
||||
default_headers=portkey_headers)
|
||||
self._embedding_model = TrackedOpenAIEmbeddings(api_key=api_key,
|
||||
model=model,
|
||||
)
|
||||
self._embedding_db_model = EmbeddingSmallOpenAI \
|
||||
if model == 'text-embedding-3-small' \
|
||||
else EmbeddingLargeOpenAI
|
||||
@@ -117,108 +116,40 @@ class ModelVariables(MutableMapping):
|
||||
|
||||
@property
|
||||
def llm(self):
|
||||
portkey_headers = self.get_portkey_headers_for_llm()
|
||||
api_key = self.get_api_key_for_llm()
|
||||
self._llm = ChatOpenAI(api_key=api_key,
|
||||
model=self._variables['llm_model'],
|
||||
temperature=self._variables['RAG_temperature'],
|
||||
base_url=PORTKEY_GATEWAY_URL,
|
||||
default_headers=portkey_headers)
|
||||
callbacks=[self.llm_metrics_handler])
|
||||
return self._llm
|
||||
|
||||
@property
|
||||
def llm_no_rag(self):
|
||||
portkey_headers = self.get_portkey_headers_for_llm()
|
||||
api_key = self.get_api_key_for_llm()
|
||||
self._llm_no_rag = ChatOpenAI(api_key=api_key,
|
||||
model=self._variables['llm_model'],
|
||||
temperature=self._variables['RAG_temperature'],
|
||||
base_url=PORTKEY_GATEWAY_URL,
|
||||
default_headers=portkey_headers)
|
||||
callbacks=[self.llm_metrics_handler])
|
||||
return self._llm_no_rag
|
||||
|
||||
def get_portkey_headers_for_llm(self):
|
||||
portkey_metadata = self.get_portkey_metadata()
|
||||
portkey_headers = createHeaders(api_key=os.getenv('PORTKEY_API_KEY'),
|
||||
metadata=portkey_metadata,
|
||||
provider=self._variables['llm_provider'],
|
||||
trace_id=current_event.trace_id,
|
||||
span_id=current_event.span_id,
|
||||
span_name=current_event.span_name,
|
||||
parent_span_id=current_event.parent_span_id
|
||||
)
|
||||
return portkey_headers
|
||||
|
||||
def get_portkey_metadata(self):
|
||||
environment = os.getenv('FLASK_ENV', 'development')
|
||||
portkey_metadata = {'tenant_id': str(self.tenant.id),
|
||||
'environment': environment,
|
||||
'trace_id': current_event.trace_id,
|
||||
'span_id': current_event.span_id,
|
||||
'span_name': current_event.span_name,
|
||||
'parent_span_id': current_event.parent_span_id,
|
||||
}
|
||||
return portkey_metadata
|
||||
|
||||
def get_api_key_for_llm(self):
|
||||
if self._variables['llm_provider'] == 'openai':
|
||||
api_key = os.getenv('OPENAI_API_KEY')
|
||||
else: # self._variables['llm_provider'] == 'anthropic'
|
||||
else: # self._variables['llm_provider'] == 'anthropic'
|
||||
api_key = os.getenv('ANTHROPIC_API_KEY')
|
||||
|
||||
return api_key
|
||||
|
||||
# def _initialize_llm(self):
|
||||
#
|
||||
#
|
||||
# if self._variables['llm_provider'] == 'openai':
|
||||
# portkey_headers = createHeaders(api_key=os.getenv('PORTKEY_API_KEY'),
|
||||
# metadata=portkey_metadata,
|
||||
# provider='openai')
|
||||
#
|
||||
# self._llm = ChatOpenAI(api_key=api_key,
|
||||
# model=self._variables['llm_model'],
|
||||
# temperature=self._variables['RAG_temperature'],
|
||||
# base_url=PORTKEY_GATEWAY_URL,
|
||||
# default_headers=portkey_headers)
|
||||
# self._llm_no_rag = ChatOpenAI(api_key=api_key,
|
||||
# model=self._variables['llm_model'],
|
||||
# temperature=self._variables['no_RAG_temperature'],
|
||||
# base_url=PORTKEY_GATEWAY_URL,
|
||||
# default_headers=portkey_headers)
|
||||
# self._variables['tool_calling_supported'] = self._variables['llm_model'] in ['gpt-4o', 'gpt-4o-mini']
|
||||
# elif self._variables['llm_provider'] == 'anthropic':
|
||||
# api_key = os.getenv('ANTHROPIC_API_KEY')
|
||||
# llm_model_ext = os.getenv('ANTHROPIC_LLM_VERSIONS', {}).get(self._variables['llm_model'])
|
||||
# self._llm = ChatAnthropic(api_key=api_key,
|
||||
# model=llm_model_ext,
|
||||
# temperature=self._variables['RAG_temperature'])
|
||||
# self._llm_no_rag = ChatAnthropic(api_key=api_key,
|
||||
# model=llm_model_ext,
|
||||
# temperature=self._variables['RAG_temperature'])
|
||||
# self._variables['tool_calling_supported'] = True
|
||||
# else:
|
||||
# raise ValueError(f"Invalid chat provider: {self._variables['llm_provider']}")
|
||||
|
||||
@property
|
||||
def transcription_client(self):
|
||||
environment = os.getenv('FLASK_ENV', 'development')
|
||||
portkey_metadata = self.get_portkey_metadata()
|
||||
portkey_headers = createHeaders(api_key=os.getenv('PORTKEY_API_KEY'),
|
||||
metadata=portkey_metadata,
|
||||
provider='openai',
|
||||
trace_id=current_event.trace_id,
|
||||
span_id=current_event.span_id,
|
||||
span_name=current_event.span_name,
|
||||
parent_span_id=current_event.parent_span_id
|
||||
)
|
||||
api_key = os.getenv('OPENAI_API_KEY')
|
||||
self._transcription_client = OpenAI(api_key=api_key,
|
||||
base_url=PORTKEY_GATEWAY_URL,
|
||||
default_headers=portkey_headers)
|
||||
self._transcription_client = OpenAI(api_key=api_key, )
|
||||
self._variables['transcription_model'] = 'whisper-1'
|
||||
return self._transcription_client
|
||||
|
||||
def transcribe(self, *args, **kwargs):
|
||||
return tracked_transcribe(self._transcription_client, *args, **kwargs)
|
||||
|
||||
@property
|
||||
def embedding_db_model(self):
|
||||
if self._embedding_db_model is None:
|
||||
|
||||
@@ -1,99 +0,0 @@
|
||||
import requests
|
||||
import json
|
||||
from typing import Optional
|
||||
|
||||
# Define a function to make the GET request
|
||||
def get_metadata_grouped_data(
|
||||
api_key: str,
|
||||
metadata_key: str,
|
||||
time_of_generation_min: Optional[str] = None,
|
||||
time_of_generation_max: Optional[str] = None,
|
||||
total_units_min: Optional[int] = None,
|
||||
total_units_max: Optional[int] = None,
|
||||
cost_min: Optional[float] = None,
|
||||
cost_max: Optional[float] = None,
|
||||
prompt_token_min: Optional[int] = None,
|
||||
prompt_token_max: Optional[int] = None,
|
||||
completion_token_min: Optional[int] = None,
|
||||
completion_token_max: Optional[int] = None,
|
||||
status_code: Optional[str] = None,
|
||||
weighted_feedback_min: Optional[float] = None,
|
||||
weighted_feedback_max: Optional[float] = None,
|
||||
virtual_keys: Optional[str] = None,
|
||||
configs: Optional[str] = None,
|
||||
workspace_slug: Optional[str] = None,
|
||||
api_key_ids: Optional[str] = None,
|
||||
current_page: Optional[int] = 1,
|
||||
page_size: Optional[int] = 20,
|
||||
metadata: Optional[str] = None,
|
||||
ai_org_model: Optional[str] = None,
|
||||
trace_id: Optional[str] = None,
|
||||
span_id: Optional[str] = None,
|
||||
):
|
||||
url = f"https://api.portkey.ai/v1/analytics/groups/metadata/{metadata_key}"
|
||||
|
||||
# Set up query parameters
|
||||
params = {
|
||||
"time_of_generation_min": time_of_generation_min,
|
||||
"time_of_generation_max": time_of_generation_max,
|
||||
"total_units_min": total_units_min,
|
||||
"total_units_max": total_units_max,
|
||||
"cost_min": cost_min,
|
||||
"cost_max": cost_max,
|
||||
"prompt_token_min": prompt_token_min,
|
||||
"prompt_token_max": prompt_token_max,
|
||||
"completion_token_min": completion_token_min,
|
||||
"completion_token_max": completion_token_max,
|
||||
"status_code": status_code,
|
||||
"weighted_feedback_min": weighted_feedback_min,
|
||||
"weighted_feedback_max": weighted_feedback_max,
|
||||
"virtual_keys": virtual_keys,
|
||||
"configs": configs,
|
||||
"workspace_slug": workspace_slug,
|
||||
"api_key_ids": api_key_ids,
|
||||
"current_page": current_page,
|
||||
"page_size": page_size,
|
||||
"metadata": metadata,
|
||||
"ai_org_model": ai_org_model,
|
||||
"trace_id": trace_id,
|
||||
"span_id": span_id,
|
||||
}
|
||||
|
||||
# Remove any keys with None values
|
||||
params = {k: v for k, v in params.items() if v is not None}
|
||||
|
||||
# Set up the headers
|
||||
headers = {
|
||||
"Authorization": f"Bearer {api_key}",
|
||||
"Content-Type": "application/json"
|
||||
}
|
||||
|
||||
# Make the GET request
|
||||
response = requests.get(url, headers=headers, params=params)
|
||||
|
||||
# Check for successful response
|
||||
if response.status_code == 200:
|
||||
return response.json() # Return JSON data
|
||||
else:
|
||||
response.raise_for_status() # Raise an exception for errors
|
||||
|
||||
# Example usage
|
||||
# Replace 'your_api_key' and 'your_metadata_key' with actual values
|
||||
api_key = 'your_api_key'
|
||||
metadata_key = 'your_metadata_key'
|
||||
|
||||
try:
|
||||
data = get_metadata_grouped_data(
|
||||
api_key=api_key,
|
||||
metadata_key=metadata_key,
|
||||
time_of_generation_min="2024-08-23T15:50:23+05:30",
|
||||
time_of_generation_max="2024-09-23T15:50:23+05:30",
|
||||
total_units_min=100,
|
||||
total_units_max=1000,
|
||||
cost_min=10,
|
||||
cost_max=100,
|
||||
status_code="200,201"
|
||||
)
|
||||
print(json.dumps(data, indent=4))
|
||||
except Exception as e:
|
||||
print(f"Error occurred: {str(e)}")
|
||||
Reference in New Issue
Block a user