Improving chat functionality significantly throughout the application.

This commit is contained in:
Josako
2024-06-12 11:07:18 +02:00
parent 27b6de8734
commit be311c440b
22 changed files with 604 additions and 127 deletions

View File

@@ -1,11 +1,13 @@
from langchain_core.retrievers import BaseRetriever
from sqlalchemy import func, and_, or_
from sqlalchemy.exc import SQLAlchemyError
from pydantic import BaseModel, Field
from typing import Any, Dict
from flask import current_app
from datetime import date
from common.extensions import db
from flask import current_app
from config.logging_config import LOGGING
from common.models.document import Document, DocumentVersion, Embedding
class EveAIRetriever(BaseRetriever):
@@ -23,26 +25,53 @@ class EveAIRetriever(BaseRetriever):
db_class = self.model_variables['embedding_db_model']
similarity_threshold = self.model_variables['similarity_threshold']
k = self.model_variables['k']
try:
res = (
current_date = date.today()
# Subquery to find the latest version of each document
subquery = (
db.session.query(
DocumentVersion.doc_id,
func.max(DocumentVersion.id).label('latest_version_id')
)
.group_by(DocumentVersion.doc_id)
.subquery()
)
# Main query to filter embeddings
query_obj = (
db.session.query(db_class,
db_class.embedding.cosine_distance(query_embedding)
.label('distance'))
.filter(db_class.embedding.cosine_distance(query_embedding) < similarity_threshold)
db_class.embedding.cosine_distance(query_embedding).label('distance'))
.join(DocumentVersion, db_class.doc_vers_id == DocumentVersion.id)
.join(Document, DocumentVersion.doc_id == Document.id)
.join(subquery, DocumentVersion.id == subquery.c.latest_version_id)
.filter(
or_(Document.valid_from.is_(None), Document.valid_from <= current_date),
or_(Document.valid_to.is_(None), Document.valid_to >= current_date),
db_class.embedding.cosine_distance(query_embedding) < similarity_threshold
)
.order_by('distance')
.limit(k)
.all()
)
current_app.rag_tuning_logger.debug(f'Retrieved {len(res)} relevant documents')
current_app.rag_tuning_logger.debug(f'---------------------------------------')
# Print the generated SQL statement for debugging
current_app.logger.debug("SQL Statement:\n")
current_app.logger.debug(query_obj.statement.compile(compile_kwargs={"literal_binds": True}))
res = query_obj.all()
# current_app.rag_tuning_logger.debug(f'Retrieved {len(res)} relevant documents')
# current_app.rag_tuning_logger.debug(f'---------------------------------------')
result = []
for doc in res:
current_app.rag_tuning_logger.debug(f'Document ID: {doc[0].id} - Distance: {doc[1]}\n')
current_app.rag_tuning_logger.debug(f'Chunk: \n {doc[0].chunk}\n\n')
# current_app.rag_tuning_logger.debug(f'Document ID: {doc[0].id} - Distance: {doc[1]}\n')
# current_app.rag_tuning_logger.debug(f'Chunk: \n {doc[0].chunk}\n\n')
result.append(f'SOURCE: {doc[0].id}\n\n{doc[0].chunk}\n\n')
except SQLAlchemyError as e:
current_app.logger.error(f'Error retrieving relevant documents: {e}')
db.session.rollback()
return []
return res
return result
def _get_query_embedding(self, query: str):
embedding_model = self.model_variables['embedding_model']

View File

@@ -6,6 +6,7 @@ from .document import Embedding
class ChatSession(db.Model):
id = db.Column(db.Integer, primary_key=True)
user_id = db.Column(db.Integer, db.ForeignKey(User.id), nullable=True)
session_id = db.Column(db.String(36), nullable=True)
session_start = db.Column(db.DateTime, nullable=False)
session_end = db.Column(db.DateTime, nullable=True)
@@ -21,6 +22,7 @@ class Interaction(db.Model):
chat_session_id = db.Column(db.Integer, db.ForeignKey(ChatSession.id), nullable=False)
question = db.Column(db.Text, nullable=False)
answer = db.Column(db.Text, nullable=True)
algorithm_used = db.Column(db.String(20), nullable=True)
language = db.Column(db.String(2), nullable=False)
appreciation = db.Column(db.Integer, nullable=True, default=100)
@@ -28,6 +30,9 @@ class Interaction(db.Model):
question_at = db.Column(db.DateTime, nullable=False)
answer_at = db.Column(db.DateTime, nullable=True)
# Relations
embeddings = db.relationship('InteractionEmbedding', backref='interaction', lazy=True)
def __repr__(self):
return f"<Interaction {self.id}>"

View File

@@ -19,6 +19,7 @@ class Tenant(db.Model):
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.String(80), unique=True, nullable=False)
website = db.Column(db.String(255), nullable=True)
timezone = db.Column(db.String(50), nullable=True, default='UTC')
# language information
default_language = db.Column(db.String(2), nullable=True)
@@ -70,7 +71,9 @@ class Tenant(db.Model):
'llm_model': self.llm_model,
'license_start_date': self.license_start_date,
'license_end_date': self.license_end_date,
'allowed_monthly_interactions': self.allowed_monthly_interactions
'allowed_monthly_interactions': self.allowed_monthly_interactions,
'embed_tuning': self.embed_tuning,
'rag_tuning': self.rag_tuning,
}

View File

@@ -1,12 +1,32 @@
import langcodes
from flask import current_app
from langchain.embeddings import OpenAIEmbeddings
from langchain.chat_models import ChatOpenAI
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_openai import ChatOpenAI
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain.prompts import ChatPromptTemplate
import ast
from typing import List
from common.models.document import EmbeddingSmallOpenAI
class CitedAnswer(BaseModel):
"""Default docstring - to be replaced with actual prompt"""
answer: str = Field(
...,
description="The answer to the user question, based on the given sources",
)
citations: List[int] = Field(
...,
description="The integer IDs of the SPECIFIC sources that were used to generate the answer"
)
def set_language_prompt_template(cls, language_prompt):
cls.__doc__ = language_prompt
def select_model_variables(tenant):
embedding_provider = tenant.embedding_model.rsplit('.', 1)[0]
embedding_model = tenant.embedding_model.rsplit('.', 1)[1]
@@ -60,7 +80,7 @@ def select_model_variables(tenant):
case 'text-embedding-3-small':
api_key = current_app.config.get('OPENAI_API_KEY')
model_variables['embedding_model'] = OpenAIEmbeddings(api_key=api_key,
model='text-embedding-3-small')
model='text-embedding-3-small')
model_variables['embedding_db_model'] = EmbeddingSmallOpenAI
model_variables['min_chunk_size'] = current_app.config.get('OAI_TE3S_MIN_CHUNK_SIZE')
model_variables['max_chunk_size'] = current_app.config.get('OAI_TE3S_MAX_CHUNK_SIZE')
@@ -78,20 +98,34 @@ def select_model_variables(tenant):
model_variables['llm'] = ChatOpenAI(api_key=api_key,
model=llm_model,
temperature=model_variables['RAG_temperature'])
tool_calling_supported = False
match llm_model:
case 'gpt-4-turbo' | 'gpt-4o':
summary_template = current_app.config.get('GPT4_SUMMARY_TEMPLATE')
rag_template = current_app.config.get('GPT4_RAG_TEMPLATE')
tool_calling_supported = True
case 'gpt-3-5-turbo':
summary_template = current_app.config.get('GPT3_5_SUMMARY_TEMPLATE')
rag_template = current_app.config.get('GPT3_5_RAG_TEMPLATE')
case _:
raise Exception(f'Error setting model variables for tenant {tenant.id} '
f'error: Invalid chat model')
model_variables['summary_prompt'] = ChatPromptTemplate.from_template(summary_template)
model_variables['rag_prompt'] = ChatPromptTemplate.from_template(rag_template)
model_variables['summary_template'] = summary_template
model_variables['rag_template'] = rag_template
if tool_calling_supported:
model_variables['cited_answer_cls'] = CitedAnswer
case _:
raise Exception(f'Error setting model variables for tenant {tenant.id} '
f'error: Invalid chat provider')
return model_variables
def create_language_template(template, language):
try:
full_language = langcodes.Language.make(language=language)
language_template = template.replace('{language}', full_language.display_name())
except ValueError:
language_template = template.replace('{language}', language)
return language_template