Started to work on interaction views. However, need a quick check in because of a python upgrade systemwide that breaks code.
This commit is contained in:
@@ -18,7 +18,7 @@ from langchain_core.exceptions import LangChainException
|
||||
from common.utils.database import Database
|
||||
from common.models.document import DocumentVersion, EmbeddingMistral, EmbeddingSmallOpenAI, Embedding
|
||||
from common.models.user import Tenant
|
||||
from common.models.interaction import ChatSession, Interaction, InteractionEmbedding
|
||||
from common.models.interaction import ChatSession, Interaction, InteractionEmbedding
|
||||
from common.extensions import db
|
||||
from common.utils.celery_utils import current_celery
|
||||
from common.utils.model_utils import select_model_variables, create_language_template, replace_variable_in_template
|
||||
@@ -33,12 +33,11 @@ def detail_question(question, language, model_variables, session_id):
|
||||
language_template = create_language_template(template, language)
|
||||
full_template = replace_variable_in_template(language_template, "{tenant_context}", model_variables['rag_context'])
|
||||
history_prompt = ChatPromptTemplate.from_template(full_template)
|
||||
setup_and_retrieval = RunnableParallel({"history": retriever,"question": RunnablePassthrough()})
|
||||
setup_and_retrieval = RunnableParallel({"history": retriever, "question": RunnablePassthrough()})
|
||||
output_parser = StrOutputParser()
|
||||
|
||||
chain = setup_and_retrieval | history_prompt | llm | output_parser
|
||||
|
||||
|
||||
try:
|
||||
answer = chain.invoke(question)
|
||||
return answer
|
||||
@@ -48,7 +47,7 @@ def detail_question(question, language, model_variables, session_id):
|
||||
|
||||
|
||||
@current_celery.task(name='ask_question', queue='llm_interactions')
|
||||
def ask_question(tenant_id, question, language, session_id):
|
||||
def ask_question(tenant_id, question, language, session_id, user_timezone):
|
||||
"""returns result structured as follows:
|
||||
result = {
|
||||
'answer': 'Your answer here',
|
||||
@@ -75,103 +74,178 @@ def ask_question(tenant_id, question, language, session_id):
|
||||
chat_session = ChatSession()
|
||||
chat_session.session_id = session_id
|
||||
chat_session.session_start = dt.now(tz.utc)
|
||||
chat_session.timezone = user_timezone
|
||||
db.session.add(chat_session)
|
||||
db.session.commit()
|
||||
except SQLAlchemyError as e:
|
||||
current_app.logger.error(f'ask_question: Error initializing chat session in database: {e}')
|
||||
raise
|
||||
|
||||
new_interaction = Interaction()
|
||||
new_interaction.question = question
|
||||
new_interaction.language = language
|
||||
new_interaction.appreciation = None
|
||||
new_interaction.chat_session_id = chat_session.id
|
||||
new_interaction.question_at = dt.now(tz.utc)
|
||||
new_interaction.algorithm_used = current_app.config['INTERACTION_ALGORITHMS']['RAG_TENANT']['name']
|
||||
|
||||
# Select variables to work with depending on tenant model
|
||||
model_variables = select_model_variables(tenant)
|
||||
tenant_info = tenant.to_dict()
|
||||
|
||||
# Langchain debugging if required
|
||||
# set_debug(True)
|
||||
|
||||
detailed_question = detail_question(question, language, model_variables, session_id)
|
||||
current_app.logger.debug(f'Original question:\n {question}\n\nDetailed question: {detailed_question}')
|
||||
new_interaction.detailed_question = detailed_question
|
||||
new_interaction.detailed_question_at = dt.now(tz.utc)
|
||||
|
||||
retriever = EveAIRetriever(model_variables, tenant_info)
|
||||
llm = model_variables['llm']
|
||||
template = model_variables['rag_template']
|
||||
language_template = create_language_template(template, language)
|
||||
full_template = replace_variable_in_template(language_template, "{tenant_context}", model_variables['rag_context'])
|
||||
rag_prompt = ChatPromptTemplate.from_template(full_template)
|
||||
setup_and_retrieval = RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
|
||||
|
||||
new_interaction_embeddings = []
|
||||
if not model_variables['cited_answer_cls']: # The model doesn't support structured feedback
|
||||
output_parser = StrOutputParser()
|
||||
|
||||
chain = setup_and_retrieval | rag_prompt | llm | output_parser
|
||||
|
||||
# Invoke the chain with the actual question
|
||||
answer = chain.invoke(detailed_question)
|
||||
new_interaction.answer = answer
|
||||
result = {
|
||||
'answer': answer,
|
||||
'citations': []
|
||||
}
|
||||
|
||||
else: # The model supports structured feedback
|
||||
structured_llm = llm.with_structured_output(model_variables['cited_answer_cls'])
|
||||
|
||||
chain = setup_and_retrieval | rag_prompt | structured_llm
|
||||
|
||||
result = chain.invoke(detailed_question).dict()
|
||||
current_app.logger.debug(f'ask_question: result answer: {result['answer']}')
|
||||
current_app.logger.debug(f'ask_question: result citations: {result["citations"]}')
|
||||
new_interaction.answer = result['answer']
|
||||
|
||||
# Filter out the existing Embedding IDs
|
||||
given_embedding_ids = [int(emb_id) for emb_id in result['citations']]
|
||||
embeddings = (
|
||||
db.session.query(Embedding)
|
||||
.filter(Embedding.id.in_(given_embedding_ids))
|
||||
.all()
|
||||
)
|
||||
existing_embedding_ids = [emb.id for emb in embeddings]
|
||||
urls = [emb.document_version.url for emb in embeddings]
|
||||
|
||||
for emb_id in existing_embedding_ids:
|
||||
new_interaction_embedding = InteractionEmbedding(embedding_id=emb_id)
|
||||
new_interaction_embedding.interaction = new_interaction
|
||||
new_interaction_embeddings.append(new_interaction_embedding)
|
||||
|
||||
result['citations'] = urls
|
||||
|
||||
new_interaction.answer_at = dt.now(tz.utc)
|
||||
chat_session.session_end = dt.now(tz.utc)
|
||||
|
||||
try:
|
||||
db.session.add(chat_session)
|
||||
db.session.add(new_interaction)
|
||||
db.session.add_all(new_interaction_embeddings)
|
||||
db.session.commit()
|
||||
except SQLAlchemyError as e:
|
||||
current_app.logger.error(f'ask_question: Error saving interaction to database: {e}')
|
||||
raise
|
||||
|
||||
# Disable langchain debugging if set above.
|
||||
# set_debug(False)
|
||||
|
||||
result, interaction = answer_using_tenant_rag(question, language, tenant, chat_session)
|
||||
result['algorithm'] = current_app.config['INTERACTION_ALGORITHMS']['RAG_TENANT']['name']
|
||||
result['interaction_id'] = new_interaction.id
|
||||
result['interaction_id'] = interaction.id
|
||||
|
||||
if result['insufficient_info']:
|
||||
if 'LLM' in tenant.fallback_algorithms:
|
||||
result, interaction = answer_using_llm(question, language, tenant, chat_session)
|
||||
result['algorithm'] = current_app.config['INTERACTION_ALGORITHMS']['LLM']['name']
|
||||
result['interaction_id'] = interaction.id
|
||||
|
||||
return result
|
||||
except Exception as e:
|
||||
current_app.logger.error(f'ask_question: Error processing question: {e}')
|
||||
raise
|
||||
|
||||
|
||||
def answer_using_tenant_rag(question, language, tenant, chat_session):
|
||||
new_interaction = Interaction()
|
||||
new_interaction.question = question
|
||||
new_interaction.language = language
|
||||
new_interaction.timezone = chat_session.timezone
|
||||
new_interaction.appreciation = None
|
||||
new_interaction.chat_session_id = chat_session.id
|
||||
new_interaction.question_at = dt.now(tz.utc)
|
||||
new_interaction.algorithm_used = current_app.config['INTERACTION_ALGORITHMS']['RAG_TENANT']['name']
|
||||
|
||||
# Select variables to work with depending on tenant model
|
||||
model_variables = select_model_variables(tenant)
|
||||
tenant_info = tenant.to_dict()
|
||||
|
||||
# Langchain debugging if required
|
||||
# set_debug(True)
|
||||
|
||||
detailed_question = detail_question(question, language, model_variables, chat_session.session_id)
|
||||
current_app.logger.debug(f'Original question:\n {question}\n\nDetailed question: {detailed_question}')
|
||||
new_interaction.detailed_question = detailed_question
|
||||
new_interaction.detailed_question_at = dt.now(tz.utc)
|
||||
|
||||
retriever = EveAIRetriever(model_variables, tenant_info)
|
||||
llm = model_variables['llm']
|
||||
template = model_variables['rag_template']
|
||||
language_template = create_language_template(template, language)
|
||||
full_template = replace_variable_in_template(language_template, "{tenant_context}", model_variables['rag_context'])
|
||||
rag_prompt = ChatPromptTemplate.from_template(full_template)
|
||||
setup_and_retrieval = RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
|
||||
|
||||
new_interaction_embeddings = []
|
||||
if not model_variables['cited_answer_cls']: # The model doesn't support structured feedback
|
||||
output_parser = StrOutputParser()
|
||||
|
||||
chain = setup_and_retrieval | rag_prompt | llm | output_parser
|
||||
|
||||
# Invoke the chain with the actual question
|
||||
answer = chain.invoke(detailed_question)
|
||||
new_interaction.answer = answer
|
||||
result = {
|
||||
'answer': answer,
|
||||
'citations': [],
|
||||
'insufficient_info': False
|
||||
}
|
||||
|
||||
else: # The model supports structured feedback
|
||||
structured_llm = llm.with_structured_output(model_variables['cited_answer_cls'])
|
||||
|
||||
chain = setup_and_retrieval | rag_prompt | structured_llm
|
||||
|
||||
result = chain.invoke(detailed_question).dict()
|
||||
current_app.logger.debug(f'ask_question: result answer: {result['answer']}')
|
||||
current_app.logger.debug(f'ask_question: result citations: {result["citations"]}')
|
||||
current_app.logger.debug(f'ask_question: insufficient information: {result["insufficient_info"]}')
|
||||
new_interaction.answer = result['answer']
|
||||
|
||||
# Filter out the existing Embedding IDs
|
||||
given_embedding_ids = [int(emb_id) for emb_id in result['citations']]
|
||||
embeddings = (
|
||||
db.session.query(Embedding)
|
||||
.filter(Embedding.id.in_(given_embedding_ids))
|
||||
.all()
|
||||
)
|
||||
existing_embedding_ids = [emb.id for emb in embeddings]
|
||||
urls = [emb.document_version.url for emb in embeddings]
|
||||
|
||||
for emb_id in existing_embedding_ids:
|
||||
new_interaction_embedding = InteractionEmbedding(embedding_id=emb_id)
|
||||
new_interaction_embedding.interaction = new_interaction
|
||||
new_interaction_embeddings.append(new_interaction_embedding)
|
||||
|
||||
result['citations'] = urls
|
||||
|
||||
# Disable langchain debugging if set above.
|
||||
# set_debug(False)
|
||||
|
||||
new_interaction.answer_at = dt.now(tz.utc)
|
||||
chat_session.session_end = dt.now(tz.utc)
|
||||
|
||||
try:
|
||||
db.session.add(chat_session)
|
||||
db.session.add(new_interaction)
|
||||
db.session.add_all(new_interaction_embeddings)
|
||||
db.session.commit()
|
||||
return result, new_interaction
|
||||
except SQLAlchemyError as e:
|
||||
current_app.logger.error(f'ask_question: Error saving interaction to database: {e}')
|
||||
raise
|
||||
|
||||
|
||||
def answer_using_llm(question, language, tenant, chat_session):
|
||||
new_interaction = Interaction()
|
||||
new_interaction.question = question
|
||||
new_interaction.language = language
|
||||
new_interaction.timezone = chat_session.timezone
|
||||
new_interaction.appreciation = None
|
||||
new_interaction.chat_session_id = chat_session.id
|
||||
new_interaction.question_at = dt.now(tz.utc)
|
||||
new_interaction.algorithm_used = current_app.config['INTERACTION_ALGORITHMS']['LLM']['name']
|
||||
|
||||
# Select variables to work with depending on tenant model
|
||||
model_variables = select_model_variables(tenant)
|
||||
tenant_info = tenant.to_dict()
|
||||
|
||||
# Langchain debugging if required
|
||||
# set_debug(True)
|
||||
|
||||
detailed_question = detail_question(question, language, model_variables, chat_session.session_id)
|
||||
current_app.logger.debug(f'Original question:\n {question}\n\nDetailed question: {detailed_question}')
|
||||
new_interaction.detailed_question = detailed_question
|
||||
new_interaction.detailed_question_at = dt.now(tz.utc)
|
||||
|
||||
retriever = EveAIRetriever(model_variables, tenant_info)
|
||||
llm = model_variables['llm_no_rag']
|
||||
template = model_variables['encyclopedia_template']
|
||||
language_template = create_language_template(template, language)
|
||||
rag_prompt = ChatPromptTemplate.from_template(language_template)
|
||||
setup = RunnablePassthrough()
|
||||
output_parser = StrOutputParser()
|
||||
|
||||
new_interaction_embeddings = []
|
||||
|
||||
chain = setup | rag_prompt | llm | output_parser
|
||||
input_question = {"question": detailed_question}
|
||||
|
||||
# Invoke the chain with the actual question
|
||||
answer = chain.invoke(input_question)
|
||||
new_interaction.answer = answer
|
||||
result = {
|
||||
'answer': answer,
|
||||
'citations': [],
|
||||
'insufficient_info': False
|
||||
}
|
||||
|
||||
# Disable langchain debugging if set above.
|
||||
# set_debug(False)
|
||||
|
||||
new_interaction.answer_at = dt.now(tz.utc)
|
||||
chat_session.session_end = dt.now(tz.utc)
|
||||
|
||||
try:
|
||||
db.session.add(chat_session)
|
||||
db.session.add(new_interaction)
|
||||
db.session.commit()
|
||||
return result, new_interaction
|
||||
except SQLAlchemyError as e:
|
||||
current_app.logger.error(f'ask_question: Error saving interaction to database: {e}')
|
||||
raise
|
||||
|
||||
|
||||
def tasks_ping():
|
||||
return 'pong'
|
||||
|
||||
Reference in New Issue
Block a user