- Bug fixes
- TRAICIE_KO_INTERVIEW_DEFINITION spacialist updated to new version - Edit Document Version now includes Catalog Tagging Fields - eveai_ordered_list_editor no longer includes Expand Button & Add Row doesn't submit - Active Period was not correctly returned in some cases in the license_period_services.py - Partner menu removed if not Super User
This commit is contained in:
@@ -0,0 +1,288 @@
|
||||
from datetime import datetime as dt, timezone as tz
|
||||
from typing import Optional, List, Dict
|
||||
|
||||
import json
|
||||
import yaml
|
||||
from crewai.flow.flow import start, listen
|
||||
from flask import current_app
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from common.extensions import db, minio_client
|
||||
from common.models.interaction import Specialist, EveAIAsset
|
||||
from common.utils.minio_utils import MIB_CONVERTOR
|
||||
from common.utils.eveai_exceptions import EveAISpecialistExecutionError
|
||||
from common.utils.model_logging_utils import set_logging_information
|
||||
from eveai_chat_workers.definitions.language_level.language_level_v1_0 import LANGUAGE_LEVEL
|
||||
from eveai_chat_workers.definitions.tone_of_voice.tone_of_voice_v1_0 import TONE_OF_VOICE
|
||||
from eveai_chat_workers.outputs.traicie.knockout_questions.knockout_questions_v1_0 import KOQuestions, KOQuestion
|
||||
from eveai_chat_workers.specialists.crewai_base_classes import EveAICrewAICrew, EveAICrewAIFlow, EveAIFlowState
|
||||
from eveai_chat_workers.specialists.crewai_base_specialist import CrewAIBaseSpecialistExecutor
|
||||
from eveai_chat_workers.specialists.specialist_typing import SpecialistResult, SpecialistArguments
|
||||
|
||||
|
||||
class SpecialistExecutor(CrewAIBaseSpecialistExecutor):
|
||||
"""
|
||||
type: TRAICIE_KO_INTERVIEW_DEFINITION_SPECIALIST
|
||||
type_version: 1.0
|
||||
Traicie Selection Specialist Executor class
|
||||
"""
|
||||
|
||||
def __init__(self, tenant_id, specialist_id, session_id, task_id, **kwargs):
|
||||
self.ko_def_crew = None
|
||||
|
||||
super().__init__(tenant_id, specialist_id, session_id, task_id)
|
||||
|
||||
|
||||
@property
|
||||
def type(self) -> str:
|
||||
return "TRAICIE_KO_INTERVIEW_DEFINITION_SPECIALIST"
|
||||
|
||||
@property
|
||||
def type_version(self) -> str:
|
||||
return "1.1"
|
||||
|
||||
def _config_task_agents(self):
|
||||
self._add_task_agent("traicie_ko_criteria_interview_definition_task", "traicie_hr_bp_agent")
|
||||
|
||||
def _config_pydantic_outputs(self):
|
||||
self._add_pydantic_output("traicie_ko_criteria_interview_definition_task", KOQuestions, "ko_questions")
|
||||
|
||||
def _config_state_result_relations(self):
|
||||
self._add_state_result_relation("ko_questions")
|
||||
|
||||
def _instantiate_specialist(self):
|
||||
verbose = self.tuning
|
||||
|
||||
ko_def_agents = [self.traicie_hr_bp_agent]
|
||||
ko_def_tasks = [self.traicie_ko_criteria_interview_definition_task]
|
||||
self.ko_def_crew = EveAICrewAICrew(
|
||||
self,
|
||||
"KO Criteria Interview Definition Crew",
|
||||
agents=ko_def_agents,
|
||||
tasks=ko_def_tasks,
|
||||
verbose=verbose,
|
||||
)
|
||||
|
||||
self.flow = KOFlow(
|
||||
self,
|
||||
self.ko_def_crew
|
||||
)
|
||||
|
||||
def execute(self, arguments: SpecialistArguments, formatted_context, citations) -> SpecialistResult:
|
||||
self.log_tuning("Traicie KO Criteria Interview Definition Specialist execution started", {})
|
||||
|
||||
if not self._cached_session.interactions:
|
||||
specialist_phase = "initial"
|
||||
else:
|
||||
specialist_phase = self._cached_session.interactions[-1].specialist_results.get('phase', 'initial')
|
||||
|
||||
results = None
|
||||
|
||||
match specialist_phase:
|
||||
case "initial":
|
||||
results = self.execute_initial_state(arguments, formatted_context, citations)
|
||||
|
||||
self.log_tuning(f"Traicie KO Criteria Interview Definition Specialist execution ended",
|
||||
{"Results": results.model_dump() if results else "No info"})
|
||||
|
||||
return results
|
||||
|
||||
|
||||
def execute_initial_state(self, arguments: SpecialistArguments, formatted_context, citations) -> SpecialistResult:
|
||||
self.log_tuning("Traicie KO Criteria Interview Definition Specialist initial_state_execution started", {})
|
||||
|
||||
selection_specialist = Specialist.query.get(arguments.specialist_id)
|
||||
if not selection_specialist:
|
||||
raise EveAISpecialistExecutionError(self.tenant_id, self.specialist_id, self.session_id,
|
||||
"No selection specialist found")
|
||||
if selection_specialist.type != "TRAICIE_SELECTION_SPECIALIST":
|
||||
raise EveAISpecialistExecutionError(self.tenant_id, self.specialist_id, self.session_id,
|
||||
"Specialist is no Selection Specialist")
|
||||
|
||||
ko_competencies = []
|
||||
for competency in selection_specialist.configuration.get("competencies", []):
|
||||
if competency["is_knockout"] is True and competency["assess"] is True:
|
||||
ko_competencies.append({"title": competency["title"], "description": competency["description"]})
|
||||
|
||||
tone_of_voice = selection_specialist.configuration.get('tone_of_voice', 'Professional & Neutral')
|
||||
selected_tone_of_voice = next(
|
||||
(item for item in TONE_OF_VOICE if item["name"] == tone_of_voice),
|
||||
None # fallback indien niet gevonden
|
||||
)
|
||||
tone_of_voice_context = f"{selected_tone_of_voice["description"]}"
|
||||
|
||||
language_level = selection_specialist.configuration.get('language_level', 'Standard')
|
||||
selected_language_level = next(
|
||||
(item for item in LANGUAGE_LEVEL if item["name"] == language_level),
|
||||
None
|
||||
)
|
||||
language_level_context = (f"{selected_language_level['description']}, "
|
||||
f"corresponding to CEFR level {selected_language_level['cefr_level']}")
|
||||
|
||||
flow_inputs = {
|
||||
'name': "Evie",
|
||||
'tone_of_voice': tone_of_voice,
|
||||
'tone_of_voice_context': tone_of_voice_context,
|
||||
'language_level': language_level,
|
||||
'language_level_context': language_level_context,
|
||||
'ko_criteria': ko_competencies,
|
||||
}
|
||||
|
||||
flow_results = self.flow.kickoff(inputs=flow_inputs)
|
||||
|
||||
new_type = "TRAICIE_KO_CRITERIA_QUESTIONS"
|
||||
|
||||
# Controleer of we een KOQuestions object hebben of een lijst van KOQuestion objecten
|
||||
if hasattr(self.flow.state.ko_questions, 'to_json'):
|
||||
# Het is een KOQuestions object
|
||||
json_str = self.flow.state.ko_questions.to_json()
|
||||
elif isinstance(self.flow.state.ko_questions, list):
|
||||
# Het is een lijst van KOQuestion objecten
|
||||
# Maak een KOQuestions object en gebruik to_json daarop
|
||||
ko_questions_obj = KOQuestions.from_question_list(self.flow.state.ko_questions)
|
||||
json_str = ko_questions_obj.to_json()
|
||||
else:
|
||||
# Fallback voor het geval het een onverwacht type is
|
||||
current_app.logger.warning(f"Unexpected type for ko_questions: {type(self.flow.state.ko_questions)}")
|
||||
ko_questions_data = [q.model_dump() for q in self.flow.state.ko_questions]
|
||||
json_str = json.dumps(ko_questions_data, ensure_ascii=False, indent=2)
|
||||
|
||||
try:
|
||||
asset = db.session.query(EveAIAsset).filter(
|
||||
EveAIAsset.type == new_type,
|
||||
EveAIAsset.type_version == "1.0.0",
|
||||
EveAIAsset.configuration.is_not(None),
|
||||
EveAIAsset.configuration.has_key('specialist_id'),
|
||||
EveAIAsset.configuration['specialist_id'].astext.cast(db.Integer) == selection_specialist.id
|
||||
).first()
|
||||
except (ValueError, TypeError) as e:
|
||||
current_app.logger.warning(f"Error casting specialist_id in asset configuration: {str(e)}")
|
||||
asset = None
|
||||
|
||||
if not asset:
|
||||
asset = EveAIAsset(
|
||||
name=f"KO Criteria Form for specialist {selection_specialist.id}",
|
||||
type=new_type,
|
||||
type_version="1.0.0",
|
||||
system_metadata={
|
||||
"Creator Specialist Type": self.type,
|
||||
"Creator Specialist Type Version": self.type_version,
|
||||
"Creator Specialist ID": self.specialist_id
|
||||
},
|
||||
configuration={
|
||||
"specialist_id": selection_specialist.id,
|
||||
},
|
||||
)
|
||||
set_logging_information(asset, dt.now(tz=tz.utc))
|
||||
asset.last_used_at = asset.created_at
|
||||
else:
|
||||
asset.last_used_at = dt.now(tz=tz.utc)
|
||||
|
||||
try:
|
||||
# Stap 1: Asset aanmaken maar nog niet committen
|
||||
db.session.add(asset)
|
||||
db.session.flush() # Geeft ons het ID zonder te committen
|
||||
|
||||
# Stap 2: Upload naar MinIO (kan falen zonder database impact)
|
||||
bucket_name, object_name, file_size = minio_client.upload_asset_file(
|
||||
tenant_id=self.tenant_id,
|
||||
asset_id=asset.id,
|
||||
asset_type=new_type,
|
||||
file_type="json",
|
||||
file_data=json_str
|
||||
)
|
||||
|
||||
# Stap 3: Storage metadata toevoegen
|
||||
asset.bucket_name = bucket_name
|
||||
asset.object_name = object_name
|
||||
asset.file_size = file_size / MIB_CONVERTOR
|
||||
asset.file_type = "json"
|
||||
|
||||
# Stap 4: Token usage toevoegen
|
||||
asset.prompt_tokens = self.ko_def_crew.usage_metrics.prompt_tokens
|
||||
asset.completion_tokens = self.ko_def_crew.usage_metrics.completion_tokens
|
||||
|
||||
# Alles in één keer committen
|
||||
db.session.commit()
|
||||
|
||||
except Exception as e:
|
||||
current_app.logger.error(f"Error creating asset: {str(e)}")
|
||||
db.session.rollback()
|
||||
# Probeer MinIO cleanup als upload is gelukt maar database commit faalde
|
||||
try:
|
||||
if 'bucket_name' in locals() and 'object_name' in locals():
|
||||
minio_client.delete_object(bucket_name, object_name)
|
||||
except:
|
||||
pass # Log maar ga door met originele exception
|
||||
raise EveAISpecialistExecutionError(self.tenant_id, self.specialist_id, self.session_id,
|
||||
f"Failed to create asset: {str(e)}")
|
||||
|
||||
results = SpecialistResult.create_for_type(self.type, self.type_version,
|
||||
answer=f"asset {asset.id} created for specialist {selection_specialist.id}",
|
||||
phase="finished",
|
||||
asset_id=asset.id,
|
||||
)
|
||||
|
||||
|
||||
return results
|
||||
|
||||
|
||||
class KODefInput(BaseModel):
|
||||
name: Optional[str] = Field(None, alias="name")
|
||||
tone_of_voice: Optional[str] = Field(None, alias="tone_of_voice")
|
||||
tone_of_voice_context: Optional[str] = Field(None, alias="tone_of_voice_context")
|
||||
language_level: Optional[str] = Field(None, alias="language_level")
|
||||
language_level_context: Optional[str] = Field(None, alias="language_level_context")
|
||||
ko_criteria: Optional[List[Dict[str, str]]] = Field(None, alias="ko_criteria")
|
||||
|
||||
|
||||
class KODefResult(SpecialistResult):
|
||||
asset_id: Optional[int] = Field(None, alias="asset_id")
|
||||
|
||||
|
||||
class KOFlowState(EveAIFlowState):
|
||||
"""Flow state for Traicie Role Definition specialist that automatically updates from task outputs"""
|
||||
input: Optional[KODefInput] = None
|
||||
ko_questions: Optional[List[KOQuestion]] = Field(None, alias="ko_questions")
|
||||
phase: Optional[str] = Field(None, alias="phase")
|
||||
|
||||
|
||||
class KOFlow(EveAICrewAIFlow[KOFlowState]):
|
||||
def __init__(self,
|
||||
specialist_executor: CrewAIBaseSpecialistExecutor,
|
||||
ko_def_crew: EveAICrewAICrew,
|
||||
**kwargs):
|
||||
super().__init__(specialist_executor, "Traicie KO Interview Definiton Specialist Flow", **kwargs)
|
||||
self.specialist_executor = specialist_executor
|
||||
self.ko_def_crew = ko_def_crew
|
||||
self.exception_raised = False
|
||||
|
||||
@start()
|
||||
def process_inputs(self):
|
||||
return ""
|
||||
|
||||
@listen(process_inputs)
|
||||
async def execute_ko_def_definition(self):
|
||||
inputs = self.state.input.model_dump()
|
||||
try:
|
||||
crew_output = await self.ko_def_crew.kickoff_async(inputs=inputs)
|
||||
# Unfortunately, crew_output will only contain the output of the latest task.
|
||||
# As we will only take into account the flow state, we need to ensure both competencies and criteria
|
||||
# are copies to the flow state.
|
||||
update = {}
|
||||
for task in self.ko_def_crew.tasks:
|
||||
if task.name == "traicie_ko_criteria_interview_definition_task":
|
||||
# update["competencies"] = task.output.pydantic.competencies
|
||||
self.state.ko_questions = task.output.pydantic.ko_questions
|
||||
# crew_output.pydantic = crew_output.pydantic.model_copy(update=update)
|
||||
self.state.phase = "personal_contact_data"
|
||||
return crew_output
|
||||
except Exception as e:
|
||||
current_app.logger.error(f"CREW execute_ko_def Kickoff Error: {str(e)}")
|
||||
self.exception_raised = True
|
||||
raise e
|
||||
|
||||
async def kickoff_async(self, inputs=None):
|
||||
self.state.input = KODefInput.model_validate(inputs)
|
||||
result = await super().kickoff_async(inputs)
|
||||
return self.state
|
||||
Reference in New Issue
Block a user