- Bug fixes

- TRAICIE_KO_INTERVIEW_DEFINITION spacialist updated to new version
- Edit Document Version now includes Catalog Tagging Fields
- eveai_ordered_list_editor no longer includes Expand Button & Add Row doesn't submit
- Active Period was not correctly returned in some cases in the license_period_services.py
- Partner menu removed if not Super User
This commit is contained in:
Josako
2025-08-05 18:48:12 +02:00
parent 212ea28de8
commit ed87d73c5a
8 changed files with 319 additions and 38 deletions

View File

@@ -0,0 +1,288 @@
from datetime import datetime as dt, timezone as tz
from typing import Optional, List, Dict
import json
import yaml
from crewai.flow.flow import start, listen
from flask import current_app
from pydantic import BaseModel, Field
from common.extensions import db, minio_client
from common.models.interaction import Specialist, EveAIAsset
from common.utils.minio_utils import MIB_CONVERTOR
from common.utils.eveai_exceptions import EveAISpecialistExecutionError
from common.utils.model_logging_utils import set_logging_information
from eveai_chat_workers.definitions.language_level.language_level_v1_0 import LANGUAGE_LEVEL
from eveai_chat_workers.definitions.tone_of_voice.tone_of_voice_v1_0 import TONE_OF_VOICE
from eveai_chat_workers.outputs.traicie.knockout_questions.knockout_questions_v1_0 import KOQuestions, KOQuestion
from eveai_chat_workers.specialists.crewai_base_classes import EveAICrewAICrew, EveAICrewAIFlow, EveAIFlowState
from eveai_chat_workers.specialists.crewai_base_specialist import CrewAIBaseSpecialistExecutor
from eveai_chat_workers.specialists.specialist_typing import SpecialistResult, SpecialistArguments
class SpecialistExecutor(CrewAIBaseSpecialistExecutor):
"""
type: TRAICIE_KO_INTERVIEW_DEFINITION_SPECIALIST
type_version: 1.0
Traicie Selection Specialist Executor class
"""
def __init__(self, tenant_id, specialist_id, session_id, task_id, **kwargs):
self.ko_def_crew = None
super().__init__(tenant_id, specialist_id, session_id, task_id)
@property
def type(self) -> str:
return "TRAICIE_KO_INTERVIEW_DEFINITION_SPECIALIST"
@property
def type_version(self) -> str:
return "1.1"
def _config_task_agents(self):
self._add_task_agent("traicie_ko_criteria_interview_definition_task", "traicie_hr_bp_agent")
def _config_pydantic_outputs(self):
self._add_pydantic_output("traicie_ko_criteria_interview_definition_task", KOQuestions, "ko_questions")
def _config_state_result_relations(self):
self._add_state_result_relation("ko_questions")
def _instantiate_specialist(self):
verbose = self.tuning
ko_def_agents = [self.traicie_hr_bp_agent]
ko_def_tasks = [self.traicie_ko_criteria_interview_definition_task]
self.ko_def_crew = EveAICrewAICrew(
self,
"KO Criteria Interview Definition Crew",
agents=ko_def_agents,
tasks=ko_def_tasks,
verbose=verbose,
)
self.flow = KOFlow(
self,
self.ko_def_crew
)
def execute(self, arguments: SpecialistArguments, formatted_context, citations) -> SpecialistResult:
self.log_tuning("Traicie KO Criteria Interview Definition Specialist execution started", {})
if not self._cached_session.interactions:
specialist_phase = "initial"
else:
specialist_phase = self._cached_session.interactions[-1].specialist_results.get('phase', 'initial')
results = None
match specialist_phase:
case "initial":
results = self.execute_initial_state(arguments, formatted_context, citations)
self.log_tuning(f"Traicie KO Criteria Interview Definition Specialist execution ended",
{"Results": results.model_dump() if results else "No info"})
return results
def execute_initial_state(self, arguments: SpecialistArguments, formatted_context, citations) -> SpecialistResult:
self.log_tuning("Traicie KO Criteria Interview Definition Specialist initial_state_execution started", {})
selection_specialist = Specialist.query.get(arguments.specialist_id)
if not selection_specialist:
raise EveAISpecialistExecutionError(self.tenant_id, self.specialist_id, self.session_id,
"No selection specialist found")
if selection_specialist.type != "TRAICIE_SELECTION_SPECIALIST":
raise EveAISpecialistExecutionError(self.tenant_id, self.specialist_id, self.session_id,
"Specialist is no Selection Specialist")
ko_competencies = []
for competency in selection_specialist.configuration.get("competencies", []):
if competency["is_knockout"] is True and competency["assess"] is True:
ko_competencies.append({"title": competency["title"], "description": competency["description"]})
tone_of_voice = selection_specialist.configuration.get('tone_of_voice', 'Professional & Neutral')
selected_tone_of_voice = next(
(item for item in TONE_OF_VOICE if item["name"] == tone_of_voice),
None # fallback indien niet gevonden
)
tone_of_voice_context = f"{selected_tone_of_voice["description"]}"
language_level = selection_specialist.configuration.get('language_level', 'Standard')
selected_language_level = next(
(item for item in LANGUAGE_LEVEL if item["name"] == language_level),
None
)
language_level_context = (f"{selected_language_level['description']}, "
f"corresponding to CEFR level {selected_language_level['cefr_level']}")
flow_inputs = {
'name': "Evie",
'tone_of_voice': tone_of_voice,
'tone_of_voice_context': tone_of_voice_context,
'language_level': language_level,
'language_level_context': language_level_context,
'ko_criteria': ko_competencies,
}
flow_results = self.flow.kickoff(inputs=flow_inputs)
new_type = "TRAICIE_KO_CRITERIA_QUESTIONS"
# Controleer of we een KOQuestions object hebben of een lijst van KOQuestion objecten
if hasattr(self.flow.state.ko_questions, 'to_json'):
# Het is een KOQuestions object
json_str = self.flow.state.ko_questions.to_json()
elif isinstance(self.flow.state.ko_questions, list):
# Het is een lijst van KOQuestion objecten
# Maak een KOQuestions object en gebruik to_json daarop
ko_questions_obj = KOQuestions.from_question_list(self.flow.state.ko_questions)
json_str = ko_questions_obj.to_json()
else:
# Fallback voor het geval het een onverwacht type is
current_app.logger.warning(f"Unexpected type for ko_questions: {type(self.flow.state.ko_questions)}")
ko_questions_data = [q.model_dump() for q in self.flow.state.ko_questions]
json_str = json.dumps(ko_questions_data, ensure_ascii=False, indent=2)
try:
asset = db.session.query(EveAIAsset).filter(
EveAIAsset.type == new_type,
EveAIAsset.type_version == "1.0.0",
EveAIAsset.configuration.is_not(None),
EveAIAsset.configuration.has_key('specialist_id'),
EveAIAsset.configuration['specialist_id'].astext.cast(db.Integer) == selection_specialist.id
).first()
except (ValueError, TypeError) as e:
current_app.logger.warning(f"Error casting specialist_id in asset configuration: {str(e)}")
asset = None
if not asset:
asset = EveAIAsset(
name=f"KO Criteria Form for specialist {selection_specialist.id}",
type=new_type,
type_version="1.0.0",
system_metadata={
"Creator Specialist Type": self.type,
"Creator Specialist Type Version": self.type_version,
"Creator Specialist ID": self.specialist_id
},
configuration={
"specialist_id": selection_specialist.id,
},
)
set_logging_information(asset, dt.now(tz=tz.utc))
asset.last_used_at = asset.created_at
else:
asset.last_used_at = dt.now(tz=tz.utc)
try:
# Stap 1: Asset aanmaken maar nog niet committen
db.session.add(asset)
db.session.flush() # Geeft ons het ID zonder te committen
# Stap 2: Upload naar MinIO (kan falen zonder database impact)
bucket_name, object_name, file_size = minio_client.upload_asset_file(
tenant_id=self.tenant_id,
asset_id=asset.id,
asset_type=new_type,
file_type="json",
file_data=json_str
)
# Stap 3: Storage metadata toevoegen
asset.bucket_name = bucket_name
asset.object_name = object_name
asset.file_size = file_size / MIB_CONVERTOR
asset.file_type = "json"
# Stap 4: Token usage toevoegen
asset.prompt_tokens = self.ko_def_crew.usage_metrics.prompt_tokens
asset.completion_tokens = self.ko_def_crew.usage_metrics.completion_tokens
# Alles in één keer committen
db.session.commit()
except Exception as e:
current_app.logger.error(f"Error creating asset: {str(e)}")
db.session.rollback()
# Probeer MinIO cleanup als upload is gelukt maar database commit faalde
try:
if 'bucket_name' in locals() and 'object_name' in locals():
minio_client.delete_object(bucket_name, object_name)
except:
pass # Log maar ga door met originele exception
raise EveAISpecialistExecutionError(self.tenant_id, self.specialist_id, self.session_id,
f"Failed to create asset: {str(e)}")
results = SpecialistResult.create_for_type(self.type, self.type_version,
answer=f"asset {asset.id} created for specialist {selection_specialist.id}",
phase="finished",
asset_id=asset.id,
)
return results
class KODefInput(BaseModel):
name: Optional[str] = Field(None, alias="name")
tone_of_voice: Optional[str] = Field(None, alias="tone_of_voice")
tone_of_voice_context: Optional[str] = Field(None, alias="tone_of_voice_context")
language_level: Optional[str] = Field(None, alias="language_level")
language_level_context: Optional[str] = Field(None, alias="language_level_context")
ko_criteria: Optional[List[Dict[str, str]]] = Field(None, alias="ko_criteria")
class KODefResult(SpecialistResult):
asset_id: Optional[int] = Field(None, alias="asset_id")
class KOFlowState(EveAIFlowState):
"""Flow state for Traicie Role Definition specialist that automatically updates from task outputs"""
input: Optional[KODefInput] = None
ko_questions: Optional[List[KOQuestion]] = Field(None, alias="ko_questions")
phase: Optional[str] = Field(None, alias="phase")
class KOFlow(EveAICrewAIFlow[KOFlowState]):
def __init__(self,
specialist_executor: CrewAIBaseSpecialistExecutor,
ko_def_crew: EveAICrewAICrew,
**kwargs):
super().__init__(specialist_executor, "Traicie KO Interview Definiton Specialist Flow", **kwargs)
self.specialist_executor = specialist_executor
self.ko_def_crew = ko_def_crew
self.exception_raised = False
@start()
def process_inputs(self):
return ""
@listen(process_inputs)
async def execute_ko_def_definition(self):
inputs = self.state.input.model_dump()
try:
crew_output = await self.ko_def_crew.kickoff_async(inputs=inputs)
# Unfortunately, crew_output will only contain the output of the latest task.
# As we will only take into account the flow state, we need to ensure both competencies and criteria
# are copies to the flow state.
update = {}
for task in self.ko_def_crew.tasks:
if task.name == "traicie_ko_criteria_interview_definition_task":
# update["competencies"] = task.output.pydantic.competencies
self.state.ko_questions = task.output.pydantic.ko_questions
# crew_output.pydantic = crew_output.pydantic.model_copy(update=update)
self.state.phase = "personal_contact_data"
return crew_output
except Exception as e:
current_app.logger.error(f"CREW execute_ko_def Kickoff Error: {str(e)}")
self.exception_raised = True
raise e
async def kickoff_async(self, inputs=None):
self.state.input = KODefInput.model_validate(inputs)
result = await super().kickoff_async(inputs)
return self.state