- Bug fixes

- TRAICIE_KO_INTERVIEW_DEFINITION spacialist updated to new version
- Edit Document Version now includes Catalog Tagging Fields
- eveai_ordered_list_editor no longer includes Expand Button & Add Row doesn't submit
- Active Period was not correctly returned in some cases in the license_period_services.py
- Partner menu removed if not Super User
This commit is contained in:
Josako
2025-08-05 18:48:12 +02:00
parent 212ea28de8
commit ed87d73c5a
8 changed files with 319 additions and 38 deletions

View File

@@ -71,6 +71,8 @@ class LicensePeriodServices:
delta = abs(current_date - license_period.period_start)
if delta > timedelta(days=current_app.config.get('ENTITLEMENTS_MAX_PENDING_DAYS', 5)):
raise EveAIPendingLicensePeriod()
else:
return license_period
case PeriodStatus.ACTIVE:
return license_period
else:

View File

@@ -10,11 +10,6 @@ PROCESSOR_TYPES = {
"description": "A Processor for PDF files",
"file_types": "pdf",
},
"AUDIO_PROCESSOR": {
"name": "AUDIO Processor",
"description": "A Processor for audio files",
"file_types": "mp3, mp4, ogg",
},
"MARKDOWN_PROCESSOR": {
"name": "Markdown Processor",
"description": "A Processor for markdown files",

View File

@@ -5,7 +5,19 @@ All notable changes to EveAI will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [2.3.12]
## [3.0.0-beta]
### Added
- Mobile Support for the chat client.
- Additional visual clues for chatbot and human messages in the chat client
### Changed
- Additional visual clues for chatbot and human messages in the chat client
- Adaptation (new version) of TRAICIE_SELECTION_SPECIALIST to further humanise interactions with end users. (Introduction of an additional interview phase to allow divergence from the interview scenario for normal questions, and convergence to the interview scenario.
- Humanisation of cached interaction messages (random choice)
- Adding specialist configuration information to be added as arguments for retrievers
## [2.3.12-alfa]
### Added
- Modal display of privacy statement and terms & conditions documents in eveai_Chat_client

View File

@@ -79,8 +79,10 @@ window.EveAI.OrderedListEditors = {
// Add row button
const addRowBtn = document.createElement('button');
addRowBtn.className = 'btn btn-sm btn-primary mt-2';
addRowBtn.type = 'button'; // Deze regel toevoegen om submit te voorkomen
addRowBtn.innerHTML = 'Add Row';
addRowBtn.addEventListener('click', () => {
addRowBtn.addEventListener('click', (e) => {
e.preventDefault(); // Extra veiligheid om submit te voorkomen
const newRow = {};
// Create empty row with default values
Object.entries(listTypeConfig).forEach(([key, field]) => {
@@ -93,27 +95,9 @@ window.EveAI.OrderedListEditors = {
table.addRow(newRow);
this._updateTextarea(containerId, table);
});
container.parentNode.insertBefore(addRowBtn, container.nextSibling);
// Add explode button for fullscreen mode
const explodeBtn = document.createElement('button');
explodeBtn.className = 'btn btn-sm btn-secondary mt-2 ms-2';
explodeBtn.innerHTML = '<i class="material-icons">fullscreen</i> Expand';
explodeBtn.addEventListener('click', () => {
container.classList.toggle('fullscreen-mode');
// Update button text based on current state
if (container.classList.contains('fullscreen-mode')) {
explodeBtn.innerHTML = '<i class="material-icons">fullscreen_exit</i> Collapse';
} else {
explodeBtn.innerHTML = '<i class="material-icons">fullscreen</i> Expand';
}
// Redraw table to adjust to new size
table.redraw(true);
});
container.parentNode.insertBefore(explodeBtn, addRowBtn.nextSibling);
// Store instance
this.instances[containerId] = {
table: table,

View File

@@ -78,7 +78,7 @@
{'name': 'Users', 'url': '/user/view_users', 'roles': ['Super User', 'Partner Admin', 'Tenant Admin']},
]) }}
{% endif %}
{% if current_user.is_authenticated %}
{% if current_user.is_authenticated and current_user.has_roles('Super User') %}
{% set partner_menu_items = [
{'name': 'Partners', 'url': '/partner/partners', 'roles': ['Super User']},
{'name': 'Partner Services', 'url': '/partner/partner_services', 'roles': ['Super User']}

View File

@@ -15,8 +15,8 @@ from common.models.document import Document, DocumentVersion, Catalog, Retriever
from common.extensions import db, cache_manager, minio_client
from common.models.interaction import Specialist, SpecialistRetriever
from common.utils.document_utils import create_document_stack, start_embedding_task, process_url, \
edit_document, \
edit_document_version, refresh_document, clean_url, is_file_type_supported_by_catalog
edit_document as util_edit_document, edit_document_version as util_edit_document_version, refresh_document, \
clean_url, is_file_type_supported_by_catalog
from common.utils.dynamic_field_utils import create_default_config_from_type_config
from common.utils.eveai_exceptions import EveAIException
from .document_forms import AddDocumentForm, AddURLForm, EditDocumentForm, EditDocumentVersionForm, \
@@ -553,7 +553,7 @@ def edit_document(document_id):
form.valid_to.data = doc.valid_to
if form.validate_on_submit():
updated_doc, error = edit_document(
updated_doc, error = util_edit_document(
session.get('tenant').get('id', 0),
document_id,
form.name.data,
@@ -581,19 +581,18 @@ def edit_document_version(document_version_id):
catalog_id = doc_vers.document.catalog_id
catalog = Catalog.query.get_or_404(catalog_id)
current_app.logger.debug(f"Catalog Configuration: {catalog.configuration}")
if catalog.configuration and len(catalog.configuration) > 0:
full_config = cache_manager.catalogs_config_cache.get_config(catalog.type)
document_version_configurations = full_config['document_version_configurations']
for config in document_version_configurations:
form.add_dynamic_fields(config, full_config, doc_vers.catalog_properties[config])
current_app.logger.debug(f"Document Version Catalog Properties: {doc_vers.catalog_properties}")
form.add_dynamic_fields("tagging_fields", catalog.configuration, doc_vers.catalog_properties["tagging_fields"])
if form.validate_on_submit():
catalog_properties = {}
# Use the full_config variable we already defined
for config in document_version_configurations:
catalog_properties[config] = form.get_dynamic_data(config)
catalog_properties = {"tagging_fields": form.get_dynamic_data("tagging_fields")}
current_app.logger.debug(f"New Document Version Catalog Properties: {catalog_properties}")
updated_version, error = edit_document_version(
updated_version, error = util_edit_document_version(
session.get('tenant').get('id', 0),
document_version_id,
form.user_context.data,
@@ -601,7 +600,7 @@ def edit_document_version(document_version_id):
)
if updated_version:
flash(f'Document Version {updated_version.id} updated successfully', 'success')
return redirect(prefixed_url_for('document_bp.document_versions', document_id=updated_version.doc_id))
return redirect(prefixed_url_for('document_bp.documents', document_id=updated_version.doc_id))
else:
flash(f'Error updating document version: {error}', 'danger')
else:

View File

@@ -404,6 +404,7 @@ class DynamicFormBase(FlaskForm):
# Prepare field data
field_data = None
if initial_data and field_name in initial_data:
current_app.logger.debug(f"Using initial data for field '{field_name}': {initial_data[field_name]}")
field_data = initial_data[field_name]
if field_type in ['tagging_fields', 'tagging_fields_filter', 'dynamic_arguments'] and isinstance(
field_data, dict):

View File

@@ -0,0 +1,288 @@
from datetime import datetime as dt, timezone as tz
from typing import Optional, List, Dict
import json
import yaml
from crewai.flow.flow import start, listen
from flask import current_app
from pydantic import BaseModel, Field
from common.extensions import db, minio_client
from common.models.interaction import Specialist, EveAIAsset
from common.utils.minio_utils import MIB_CONVERTOR
from common.utils.eveai_exceptions import EveAISpecialistExecutionError
from common.utils.model_logging_utils import set_logging_information
from eveai_chat_workers.definitions.language_level.language_level_v1_0 import LANGUAGE_LEVEL
from eveai_chat_workers.definitions.tone_of_voice.tone_of_voice_v1_0 import TONE_OF_VOICE
from eveai_chat_workers.outputs.traicie.knockout_questions.knockout_questions_v1_0 import KOQuestions, KOQuestion
from eveai_chat_workers.specialists.crewai_base_classes import EveAICrewAICrew, EveAICrewAIFlow, EveAIFlowState
from eveai_chat_workers.specialists.crewai_base_specialist import CrewAIBaseSpecialistExecutor
from eveai_chat_workers.specialists.specialist_typing import SpecialistResult, SpecialistArguments
class SpecialistExecutor(CrewAIBaseSpecialistExecutor):
"""
type: TRAICIE_KO_INTERVIEW_DEFINITION_SPECIALIST
type_version: 1.0
Traicie Selection Specialist Executor class
"""
def __init__(self, tenant_id, specialist_id, session_id, task_id, **kwargs):
self.ko_def_crew = None
super().__init__(tenant_id, specialist_id, session_id, task_id)
@property
def type(self) -> str:
return "TRAICIE_KO_INTERVIEW_DEFINITION_SPECIALIST"
@property
def type_version(self) -> str:
return "1.1"
def _config_task_agents(self):
self._add_task_agent("traicie_ko_criteria_interview_definition_task", "traicie_hr_bp_agent")
def _config_pydantic_outputs(self):
self._add_pydantic_output("traicie_ko_criteria_interview_definition_task", KOQuestions, "ko_questions")
def _config_state_result_relations(self):
self._add_state_result_relation("ko_questions")
def _instantiate_specialist(self):
verbose = self.tuning
ko_def_agents = [self.traicie_hr_bp_agent]
ko_def_tasks = [self.traicie_ko_criteria_interview_definition_task]
self.ko_def_crew = EveAICrewAICrew(
self,
"KO Criteria Interview Definition Crew",
agents=ko_def_agents,
tasks=ko_def_tasks,
verbose=verbose,
)
self.flow = KOFlow(
self,
self.ko_def_crew
)
def execute(self, arguments: SpecialistArguments, formatted_context, citations) -> SpecialistResult:
self.log_tuning("Traicie KO Criteria Interview Definition Specialist execution started", {})
if not self._cached_session.interactions:
specialist_phase = "initial"
else:
specialist_phase = self._cached_session.interactions[-1].specialist_results.get('phase', 'initial')
results = None
match specialist_phase:
case "initial":
results = self.execute_initial_state(arguments, formatted_context, citations)
self.log_tuning(f"Traicie KO Criteria Interview Definition Specialist execution ended",
{"Results": results.model_dump() if results else "No info"})
return results
def execute_initial_state(self, arguments: SpecialistArguments, formatted_context, citations) -> SpecialistResult:
self.log_tuning("Traicie KO Criteria Interview Definition Specialist initial_state_execution started", {})
selection_specialist = Specialist.query.get(arguments.specialist_id)
if not selection_specialist:
raise EveAISpecialistExecutionError(self.tenant_id, self.specialist_id, self.session_id,
"No selection specialist found")
if selection_specialist.type != "TRAICIE_SELECTION_SPECIALIST":
raise EveAISpecialistExecutionError(self.tenant_id, self.specialist_id, self.session_id,
"Specialist is no Selection Specialist")
ko_competencies = []
for competency in selection_specialist.configuration.get("competencies", []):
if competency["is_knockout"] is True and competency["assess"] is True:
ko_competencies.append({"title": competency["title"], "description": competency["description"]})
tone_of_voice = selection_specialist.configuration.get('tone_of_voice', 'Professional & Neutral')
selected_tone_of_voice = next(
(item for item in TONE_OF_VOICE if item["name"] == tone_of_voice),
None # fallback indien niet gevonden
)
tone_of_voice_context = f"{selected_tone_of_voice["description"]}"
language_level = selection_specialist.configuration.get('language_level', 'Standard')
selected_language_level = next(
(item for item in LANGUAGE_LEVEL if item["name"] == language_level),
None
)
language_level_context = (f"{selected_language_level['description']}, "
f"corresponding to CEFR level {selected_language_level['cefr_level']}")
flow_inputs = {
'name': "Evie",
'tone_of_voice': tone_of_voice,
'tone_of_voice_context': tone_of_voice_context,
'language_level': language_level,
'language_level_context': language_level_context,
'ko_criteria': ko_competencies,
}
flow_results = self.flow.kickoff(inputs=flow_inputs)
new_type = "TRAICIE_KO_CRITERIA_QUESTIONS"
# Controleer of we een KOQuestions object hebben of een lijst van KOQuestion objecten
if hasattr(self.flow.state.ko_questions, 'to_json'):
# Het is een KOQuestions object
json_str = self.flow.state.ko_questions.to_json()
elif isinstance(self.flow.state.ko_questions, list):
# Het is een lijst van KOQuestion objecten
# Maak een KOQuestions object en gebruik to_json daarop
ko_questions_obj = KOQuestions.from_question_list(self.flow.state.ko_questions)
json_str = ko_questions_obj.to_json()
else:
# Fallback voor het geval het een onverwacht type is
current_app.logger.warning(f"Unexpected type for ko_questions: {type(self.flow.state.ko_questions)}")
ko_questions_data = [q.model_dump() for q in self.flow.state.ko_questions]
json_str = json.dumps(ko_questions_data, ensure_ascii=False, indent=2)
try:
asset = db.session.query(EveAIAsset).filter(
EveAIAsset.type == new_type,
EveAIAsset.type_version == "1.0.0",
EveAIAsset.configuration.is_not(None),
EveAIAsset.configuration.has_key('specialist_id'),
EveAIAsset.configuration['specialist_id'].astext.cast(db.Integer) == selection_specialist.id
).first()
except (ValueError, TypeError) as e:
current_app.logger.warning(f"Error casting specialist_id in asset configuration: {str(e)}")
asset = None
if not asset:
asset = EveAIAsset(
name=f"KO Criteria Form for specialist {selection_specialist.id}",
type=new_type,
type_version="1.0.0",
system_metadata={
"Creator Specialist Type": self.type,
"Creator Specialist Type Version": self.type_version,
"Creator Specialist ID": self.specialist_id
},
configuration={
"specialist_id": selection_specialist.id,
},
)
set_logging_information(asset, dt.now(tz=tz.utc))
asset.last_used_at = asset.created_at
else:
asset.last_used_at = dt.now(tz=tz.utc)
try:
# Stap 1: Asset aanmaken maar nog niet committen
db.session.add(asset)
db.session.flush() # Geeft ons het ID zonder te committen
# Stap 2: Upload naar MinIO (kan falen zonder database impact)
bucket_name, object_name, file_size = minio_client.upload_asset_file(
tenant_id=self.tenant_id,
asset_id=asset.id,
asset_type=new_type,
file_type="json",
file_data=json_str
)
# Stap 3: Storage metadata toevoegen
asset.bucket_name = bucket_name
asset.object_name = object_name
asset.file_size = file_size / MIB_CONVERTOR
asset.file_type = "json"
# Stap 4: Token usage toevoegen
asset.prompt_tokens = self.ko_def_crew.usage_metrics.prompt_tokens
asset.completion_tokens = self.ko_def_crew.usage_metrics.completion_tokens
# Alles in één keer committen
db.session.commit()
except Exception as e:
current_app.logger.error(f"Error creating asset: {str(e)}")
db.session.rollback()
# Probeer MinIO cleanup als upload is gelukt maar database commit faalde
try:
if 'bucket_name' in locals() and 'object_name' in locals():
minio_client.delete_object(bucket_name, object_name)
except:
pass # Log maar ga door met originele exception
raise EveAISpecialistExecutionError(self.tenant_id, self.specialist_id, self.session_id,
f"Failed to create asset: {str(e)}")
results = SpecialistResult.create_for_type(self.type, self.type_version,
answer=f"asset {asset.id} created for specialist {selection_specialist.id}",
phase="finished",
asset_id=asset.id,
)
return results
class KODefInput(BaseModel):
name: Optional[str] = Field(None, alias="name")
tone_of_voice: Optional[str] = Field(None, alias="tone_of_voice")
tone_of_voice_context: Optional[str] = Field(None, alias="tone_of_voice_context")
language_level: Optional[str] = Field(None, alias="language_level")
language_level_context: Optional[str] = Field(None, alias="language_level_context")
ko_criteria: Optional[List[Dict[str, str]]] = Field(None, alias="ko_criteria")
class KODefResult(SpecialistResult):
asset_id: Optional[int] = Field(None, alias="asset_id")
class KOFlowState(EveAIFlowState):
"""Flow state for Traicie Role Definition specialist that automatically updates from task outputs"""
input: Optional[KODefInput] = None
ko_questions: Optional[List[KOQuestion]] = Field(None, alias="ko_questions")
phase: Optional[str] = Field(None, alias="phase")
class KOFlow(EveAICrewAIFlow[KOFlowState]):
def __init__(self,
specialist_executor: CrewAIBaseSpecialistExecutor,
ko_def_crew: EveAICrewAICrew,
**kwargs):
super().__init__(specialist_executor, "Traicie KO Interview Definiton Specialist Flow", **kwargs)
self.specialist_executor = specialist_executor
self.ko_def_crew = ko_def_crew
self.exception_raised = False
@start()
def process_inputs(self):
return ""
@listen(process_inputs)
async def execute_ko_def_definition(self):
inputs = self.state.input.model_dump()
try:
crew_output = await self.ko_def_crew.kickoff_async(inputs=inputs)
# Unfortunately, crew_output will only contain the output of the latest task.
# As we will only take into account the flow state, we need to ensure both competencies and criteria
# are copies to the flow state.
update = {}
for task in self.ko_def_crew.tasks:
if task.name == "traicie_ko_criteria_interview_definition_task":
# update["competencies"] = task.output.pydantic.competencies
self.state.ko_questions = task.output.pydantic.ko_questions
# crew_output.pydantic = crew_output.pydantic.model_copy(update=update)
self.state.phase = "personal_contact_data"
return crew_output
except Exception as e:
current_app.logger.error(f"CREW execute_ko_def Kickoff Error: {str(e)}")
self.exception_raised = True
raise e
async def kickoff_async(self, inputs=None):
self.state.input = KODefInput.model_validate(inputs)
result = await super().kickoff_async(inputs)
return self.state