import langcodes from flask import current_app from langchain_community.embeddings import OpenAIEmbeddings from langchain_openai import ChatOpenAI from langchain_core.pydantic_v1 import BaseModel, Field from langchain.prompts import ChatPromptTemplate import ast from typing import List from common.models.document import EmbeddingSmallOpenAI class CitedAnswer(BaseModel): """Default docstring - to be replaced with actual prompt""" answer: str = Field( ..., description="The answer to the user question, based on the given sources", ) citations: List[int] = Field( ..., description="The integer IDs of the SPECIFIC sources that were used to generate the answer" ) def set_language_prompt_template(cls, language_prompt): cls.__doc__ = language_prompt def select_model_variables(tenant): embedding_provider = tenant.embedding_model.rsplit('.', 1)[0] embedding_model = tenant.embedding_model.rsplit('.', 1)[1] llm_provider = tenant.llm_model.rsplit('.', 1)[0] llm_model = tenant.llm_model.rsplit('.', 1)[1] # Set model variables model_variables = {} if tenant.es_k: model_variables['k'] = tenant.es_k else: model_variables['k'] = 5 if tenant.es_similarity_threshold: model_variables['similarity_threshold'] = tenant.es_similarity_threshold else: model_variables['similarity_threshold'] = 0.7 if tenant.chat_RAG_temperature: model_variables['RAG_temperature'] = tenant.chat_RAG_temperature else: model_variables['RAG_temperature'] = 0.3 if tenant.chat_no_RAG_temperature: model_variables['no_RAG_temperature'] = tenant.chat_no_RAG_temperature else: model_variables['no_RAG_temperature'] = 0.5 # Set Tuning variables if tenant.embed_tuning: model_variables['embed_tuning'] = tenant.embed_tuning else: model_variables['embed_tuning'] = False if tenant.rag_tuning: model_variables['rag_tuning'] = tenant.rag_tuning else: model_variables['rag_tuning'] = False # Set HTML Chunking Variables model_variables['html_tags'] = tenant.html_tags model_variables['html_end_tags'] = tenant.html_end_tags model_variables['html_included_elements'] = tenant.html_included_elements model_variables['html_excluded_elements'] = tenant.html_excluded_elements # Set Embedding variables match embedding_provider: case 'openai': match embedding_model: case 'text-embedding-3-small': api_key = current_app.config.get('OPENAI_API_KEY') model_variables['embedding_model'] = OpenAIEmbeddings(api_key=api_key, model='text-embedding-3-small') model_variables['embedding_db_model'] = EmbeddingSmallOpenAI model_variables['min_chunk_size'] = current_app.config.get('OAI_TE3S_MIN_CHUNK_SIZE') model_variables['max_chunk_size'] = current_app.config.get('OAI_TE3S_MAX_CHUNK_SIZE') case _: raise Exception(f'Error setting model variables for tenant {tenant.id} ' f'error: Invalid embedding model') case _: raise Exception(f'Error setting model variables for tenant {tenant.id} ' f'error: Invalid embedding provider') # Set Chat model variables match llm_provider: case 'openai': api_key = current_app.config.get('OPENAI_API_KEY') model_variables['llm'] = ChatOpenAI(api_key=api_key, model=llm_model, temperature=model_variables['RAG_temperature']) tool_calling_supported = False match llm_model: case 'gpt-4-turbo' | 'gpt-4o': summary_template = current_app.config.get('GPT4_SUMMARY_TEMPLATE') rag_template = current_app.config.get('GPT4_RAG_TEMPLATE') history_template = current_app.config.get('GPT4_HISTORY_TEMPLATE') tool_calling_supported = True case 'gpt-3-5-turbo': summary_template = current_app.config.get('GPT3_5_SUMMARY_TEMPLATE') rag_template = current_app.config.get('GPT3_5_RAG_TEMPLATE') history_template = current_app.config.get('GPT3_5_HISTORY_TEMPLATE') case _: raise Exception(f'Error setting model variables for tenant {tenant.id} ' f'error: Invalid chat model') model_variables['summary_template'] = summary_template model_variables['rag_template'] = rag_template model_variables['history_template'] = history_template if tool_calling_supported: model_variables['cited_answer_cls'] = CitedAnswer case _: raise Exception(f'Error setting model variables for tenant {tenant.id} ' f'error: Invalid chat provider') return model_variables def create_language_template(template, language): try: full_language = langcodes.Language.make(language=language) language_template = template.replace('{language}', full_language.display_name()) except ValueError: language_template = template.replace('{language}', language) return language_template