from common.extensions import db from .user import User, Tenant from pgvector.sqlalchemy import Vector class Document(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(100), nullable=False) tenant_id = db.Column(db.Integer, db.ForeignKey(Tenant.id), nullable=False) valid_from = db.Column(db.DateTime, nullable=True) valid_to = db.Column(db.DateTime, nullable=True) # Versioning Information created_at = db.Column(db.DateTime, nullable=False, server_default=db.func.now()) created_by = db.Column(db.Integer, db.ForeignKey(User.id), nullable=True) updated_at = db.Column(db.DateTime, nullable=False, server_default=db.func.now(), onupdate=db.func.now()) updated_by = db.Column(db.Integer, db.ForeignKey(User.id)) # Relations versions = db.relationship('DocumentVersion', backref='document', lazy=True) def __repr__(self): return f"" class DocumentVersion(db.Model): id = db.Column(db.Integer, primary_key=True) doc_id = db.Column(db.Integer, db.ForeignKey(Document.id), nullable=False) url = db.Column(db.String(200), nullable=True) file_location = db.Column(db.String(255), nullable=True) file_name = db.Column(db.String(200), nullable=True) file_type = db.Column(db.String(20), nullable=True) language = db.Column(db.String(2), nullable=False) user_context = db.Column(db.Text, nullable=True) system_context = db.Column(db.Text, nullable=True) # Versioning Information created_at = db.Column(db.DateTime, nullable=False, server_default=db.func.now()) created_by = db.Column(db.Integer, db.ForeignKey(User.id)) updated_at = db.Column(db.DateTime, nullable=False, server_default=db.func.now(), onupdate=db.func.now()) updated_by = db.Column(db.Integer, db.ForeignKey(User.id)) # Processing Information processing = db.Column(db.Boolean, nullable=False, default=False) processing_started_at = db.Column(db.DateTime, nullable=True) processing_finished_at = db.Column(db.DateTime, nullable=True) processing_error = db.Column(db.String(255), nullable=True) # Relations embeddings = db.relationship('Embedding', backref='document_version', lazy=True) def __repr__(self): return f".{self.id}>" def calc_file_location(self): return f"{self.document.tenant_id}/{self.document.id}/{self.language}" def calc_file_name(self): return f"{self.id}.{self.file_type}" class Embedding(db.Model): __tablename__ = 'embeddings' id = db.Column(db.Integer, primary_key=True) type = db.Column(db.String(30), nullable=False) doc_vers_id = db.Column(db.Integer, db.ForeignKey(DocumentVersion.id), nullable=False) active = db.Column(db.Boolean, nullable=False, default=True) chunk = db.Column(db.Text, nullable=False) __mapper_args__ = { 'polymorphic_identity': 'embedding', 'polymorphic_on': type } class EmbeddingMistral(Embedding): __tablename__ = 'embedding_mistral' id = db.Column(db.Integer, db.ForeignKey('embeddings.id'), primary_key=True) # 1024 is the MISTRAL Embedding dimension. # If another embedding model is chosen, this dimension may need to be changed. embedding = db.Column(Vector(1024), nullable=False) __mapper_args__ = { 'polymorphic_identity': 'embedding_mistral', } class EmbeddingSmallOpenAI(Embedding): __tablename__ = 'embedding_small_openai' id = db.Column(db.Integer, db.ForeignKey('embeddings.id'), primary_key=True) # 1536 is the OpenAI Small Embedding dimension. # If another embedding model is chosen, this dimension may need to be changed. embedding = db.Column(Vector(1536), nullable=False) __mapper_args__ = { 'polymorphic_identity': 'embedding_small_openai', } class EmbeddingLargeOpenAI(Embedding): __tablename__ = 'embedding_large_openai' id = db.Column(db.Integer, db.ForeignKey('embeddings.id'), primary_key=True) # 3072 is the OpenAI Large Embedding dimension. # If another embedding model is chosen, this dimension may need to be changed. embedding = db.Column(Vector(3072), nullable=False) __mapper_args__ = { 'polymorphic_identity': 'embedding_large_openai', }