Files
eveAI/common/utils/model_utils.py
Josako 122d1a18df - Allow for more complex and longer PDFs to be uploaded to Evie. First implmentation of a processor for specific file types.
- Allow URLs to contain other information than just HTML information. It can alose refer to e.g. PDF-files.
2024-08-27 07:05:56 +02:00

228 lines
10 KiB
Python

import os
import langcodes
from flask import current_app
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_anthropic import ChatAnthropic
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain.prompts import ChatPromptTemplate
import ast
from typing import List
from openai import OpenAI
# from groq import Groq
from portkey_ai import createHeaders, PORTKEY_GATEWAY_URL
from common.models.document import EmbeddingSmallOpenAI, EmbeddingLargeOpenAI
class CitedAnswer(BaseModel):
"""Default docstring - to be replaced with actual prompt"""
answer: str = Field(
...,
description="The answer to the user question, based on the given sources",
)
citations: List[int] = Field(
...,
description="The integer IDs of the SPECIFIC sources that were used to generate the answer"
)
insufficient_info: bool = Field(
False, # Default value is set to False
description="A boolean indicating wether given sources were sufficient or not to generate the answer"
)
def set_language_prompt_template(cls, language_prompt):
cls.__doc__ = language_prompt
def select_model_variables(tenant):
embedding_provider = tenant.embedding_model.rsplit('.', 1)[0]
embedding_model = tenant.embedding_model.rsplit('.', 1)[1]
llm_provider = tenant.llm_model.rsplit('.', 1)[0]
llm_model = tenant.llm_model.rsplit('.', 1)[1]
# Set model variables
model_variables = {}
if tenant.es_k:
model_variables['k'] = tenant.es_k
else:
model_variables['k'] = 5
if tenant.es_similarity_threshold:
model_variables['similarity_threshold'] = tenant.es_similarity_threshold
else:
model_variables['similarity_threshold'] = 0.7
if tenant.chat_RAG_temperature:
model_variables['RAG_temperature'] = tenant.chat_RAG_temperature
else:
model_variables['RAG_temperature'] = 0.3
if tenant.chat_no_RAG_temperature:
model_variables['no_RAG_temperature'] = tenant.chat_no_RAG_temperature
else:
model_variables['no_RAG_temperature'] = 0.5
# Set Tuning variables
if tenant.embed_tuning:
model_variables['embed_tuning'] = tenant.embed_tuning
else:
model_variables['embed_tuning'] = False
if tenant.rag_tuning:
model_variables['rag_tuning'] = tenant.rag_tuning
else:
model_variables['rag_tuning'] = False
if tenant.rag_context:
model_variables['rag_context'] = tenant.rag_context
else:
model_variables['rag_context'] = " "
# Set HTML Chunking Variables
model_variables['html_tags'] = tenant.html_tags
model_variables['html_end_tags'] = tenant.html_end_tags
model_variables['html_included_elements'] = tenant.html_included_elements
model_variables['html_excluded_elements'] = tenant.html_excluded_elements
model_variables['html_excluded_classes'] = tenant.html_excluded_classes
# Set Chunk Size variables
model_variables['min_chunk_size'] = tenant.min_chunk_size
model_variables['max_chunk_size'] = tenant.max_chunk_size
environment = os.getenv('FLASK_ENV', 'development')
portkey_metadata = {'tenant_id': str(tenant.id), 'environment': environment}
# Set Embedding variables
match embedding_provider:
case 'openai':
portkey_headers = createHeaders(api_key=current_app.config.get('PORTKEY_API_KEY'),
provider='openai',
metadata=portkey_metadata)
match embedding_model:
case 'text-embedding-3-small':
api_key = current_app.config.get('OPENAI_API_KEY')
model_variables['embedding_model'] = OpenAIEmbeddings(api_key=api_key,
model='text-embedding-3-small',
base_url=PORTKEY_GATEWAY_URL,
default_headers=portkey_headers
)
model_variables['embedding_db_model'] = EmbeddingSmallOpenAI
case 'text-embedding-3-large':
api_key = current_app.config.get('OPENAI_API_KEY')
model_variables['embedding_model'] = OpenAIEmbeddings(api_key=api_key,
model='text-embedding-3-large',
base_url=PORTKEY_GATEWAY_URL,
default_headers=portkey_headers
)
model_variables['embedding_db_model'] = EmbeddingLargeOpenAI
case _:
raise Exception(f'Error setting model variables for tenant {tenant.id} '
f'error: Invalid embedding model')
case _:
raise Exception(f'Error setting model variables for tenant {tenant.id} '
f'error: Invalid embedding provider')
# Set Chat model variables
match llm_provider:
case 'openai':
portkey_headers = createHeaders(api_key=current_app.config.get('PORTKEY_API_KEY'),
metadata=portkey_metadata,
provider='openai')
tool_calling_supported = False
api_key = current_app.config.get('OPENAI_API_KEY')
model_variables['llm'] = ChatOpenAI(api_key=api_key,
model=llm_model,
temperature=model_variables['RAG_temperature'],
base_url=PORTKEY_GATEWAY_URL,
default_headers=portkey_headers)
model_variables['llm_no_rag'] = ChatOpenAI(api_key=api_key,
model=llm_model,
temperature=model_variables['no_RAG_temperature'],
base_url=PORTKEY_GATEWAY_URL,
default_headers=portkey_headers)
tool_calling_supported = False
match llm_model:
case 'gpt-4o' | 'gpt-4o-mini':
tool_calling_supported = True
PDF_chunk_size = 10000
PDF_chunk_overlap = 200
PDF_min_chunk_size = 8000
PDF_max_chunk_size = 12000
case _:
raise Exception(f'Error setting model variables for tenant {tenant.id} '
f'error: Invalid chat model')
case 'anthropic':
api_key = current_app.config.get('ANTHROPIC_API_KEY')
# Anthropic does not have the same 'generic' model names as OpenAI
llm_model_ext = current_app.config.get('ANTHROPIC_LLM_VERSIONS').get(llm_model)
model_variables['llm'] = ChatAnthropic(api_key=api_key,
model=llm_model_ext,
temperature=model_variables['RAG_temperature'])
model_variables['llm_no_rag'] = ChatAnthropic(api_key=api_key,
model=llm_model_ext,
temperature=model_variables['RAG_temperature'])
tool_calling_supported = True
PDF_chunk_size = 10000
PDF_chunk_overlap = 200
PDF_min_chunk_size = 8000
PDF_max_chunk_size = 12000
case _:
raise Exception(f'Error setting model variables for tenant {tenant.id} '
f'error: Invalid chat provider')
model_variables['PDF_chunk_size'] = PDF_chunk_size
model_variables['PDF_chunk_overlap'] = PDF_chunk_overlap
model_variables['PDF_min_chunk_size'] = PDF_min_chunk_size
model_variables['PDF_max_chunk_size'] = PDF_max_chunk_size
if tool_calling_supported:
model_variables['cited_answer_cls'] = CitedAnswer
templates = current_app.config['PROMPT_TEMPLATES'][f'{llm_provider}.{llm_model}']
model_variables['summary_template'] = templates['summary']
model_variables['rag_template'] = templates['rag']
model_variables['history_template'] = templates['history']
model_variables['encyclopedia_template'] = templates['encyclopedia']
model_variables['transcript_template'] = templates['transcript']
model_variables['html_parse_template'] = templates['html_parse']
model_variables['pdf_parse_template'] = templates['pdf_parse']
model_variables['annotation_chunk_length'] = current_app.config['ANNOTATION_TEXT_CHUNK_LENGTH'][tenant.llm_model]
# Transcription Client Variables.
# Using Groq
# api_key = current_app.config.get('GROQ_API_KEY')
# model_variables['transcription_client'] = Groq(api_key=api_key)
# model_variables['transcription_model'] = 'whisper-large-v3'
# Using OpenAI for transcriptions
portkey_metadata = {'tenant_id': str(tenant.id)}
portkey_headers = createHeaders(api_key=current_app.config.get('PORTKEY_API_KEY'),
metadata=portkey_metadata,
provider='openai'
)
api_key = current_app.config.get('OPENAI_API_KEY')
model_variables['transcription_client'] = OpenAI(api_key=api_key,
base_url=PORTKEY_GATEWAY_URL,
default_headers=portkey_headers)
model_variables['transcription_model'] = 'whisper-1'
return model_variables
def create_language_template(template, language):
try:
full_language = langcodes.Language.make(language=language)
language_template = template.replace('{language}', full_language.display_name())
except ValueError:
language_template = template.replace('{language}', language)
return language_template
def replace_variable_in_template(template, variable, value):
return template.replace(variable, value)