Files
eveAI/common/langchain/tracked_openai_embeddings.py
Josako b700cfac64 - Improvements on audio processing to limit CPU and memory usage
- Removed Portkey from the equation, and defined explicit monitoring using Langchain native code
- Optimization of Business Event logging
2024-10-02 14:11:46 +02:00

52 lines
1.6 KiB
Python

from langchain_openai import OpenAIEmbeddings
from typing import List, Any
import time
from common.utils.business_event_context import current_event
class TrackedOpenAIEmbeddings(OpenAIEmbeddings):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def embed_documents(self, texts: list[str]) -> list[list[float]]:
start_time = time.time()
result = super().embed_documents(texts)
end_time = time.time()
# Estimate token usage (OpenAI uses tiktoken for this)
import tiktoken
enc = tiktoken.encoding_for_model(self.model)
total_tokens = sum(len(enc.encode(text)) for text in texts)
metrics = {
'total_tokens': total_tokens,
'prompt_tokens': total_tokens, # For embeddings, all tokens are prompt tokens
'completion_tokens': 0,
'time_elapsed': end_time - start_time,
'interaction_type': 'Embedding',
}
current_event.log_llm_metrics(metrics)
return result
def embed_query(self, text: str) -> List[float]:
start_time = time.time()
result = super().embed_query(text)
end_time = time.time()
# Estimate token usage
import tiktoken
enc = tiktoken.encoding_for_model(self.model)
total_tokens = len(enc.encode(text))
metrics = {
'total_tokens': total_tokens,
'prompt_tokens': total_tokens,
'completion_tokens': 0,
'time_elapsed': end_time - start_time,
'interaction_type': 'Embedding',
}
current_event.log_llm_metrics(metrics)
return result