Files
eveAI/common/langchain/eveai_default_rag_retriever.py
Josako aa358df28e - Allowing for multiple types of Catalogs
- Introduction of retrievers
- Ensuring processing information is collected from Catalog iso Tenant
- Introduction of a generic Form class to enable dynamic fields based on a configuration
- Realisation of Retriever functionality to support dynamic fields
2024-10-25 14:11:47 +02:00

146 lines
7.0 KiB
Python

from langchain_core.retrievers import BaseRetriever
from sqlalchemy import func, and_, or_, desc
from sqlalchemy.exc import SQLAlchemyError
from pydantic import BaseModel, Field, PrivateAttr
from typing import Any, Dict
from flask import current_app
from common.extensions import db
from common.models.document import Document, DocumentVersion
from common.utils.datetime_utils import get_date_in_timezone
from common.utils.model_utils import ModelVariables
class EveAIDefaultRagRetriever(BaseRetriever, BaseModel):
_catalog_id: int = PrivateAttr()
_model_variables: ModelVariables = PrivateAttr()
_tenant_info: Dict[str, Any] = PrivateAttr()
def __init__(self, catalog_id: int, model_variables: ModelVariables, tenant_info: Dict[str, Any]):
super().__init__()
current_app.logger.debug(f'Model variables type: {type(model_variables)}')
self._catalog_id = catalog_id
self._model_variables = model_variables
self._tenant_info = tenant_info
@property
def catalog_id(self) -> int:
return self._catalog_id
@property
def model_variables(self) -> ModelVariables:
return self._model_variables
@property
def tenant_info(self) -> Dict[str, Any]:
return self._tenant_info
def _get_relevant_documents(self, query: str):
current_app.logger.debug(f'Retrieving relevant documents for query: {query}')
query_embedding = self._get_query_embedding(query)
current_app.logger.debug(f'Model Variables Private: {type(self._model_variables)}')
current_app.logger.debug(f'Model Variables Property: {type(self.model_variables)}')
db_class = self.model_variables['embedding_db_model']
similarity_threshold = self.model_variables['similarity_threshold']
k = self.model_variables['k']
if self.model_variables['rag_tuning']:
try:
current_date = get_date_in_timezone(self.tenant_info['timezone'])
current_app.rag_tuning_logger.debug(f'Current date: {current_date}\n')
# Debug query to show similarity for all valid documents (without chunk text)
debug_query = (
db.session.query(
Document.id.label('document_id'),
DocumentVersion.id.label('version_id'),
db_class.id.label('embedding_id'),
(1 - db_class.embedding.cosine_distance(query_embedding)).label('similarity')
)
.join(DocumentVersion, db_class.doc_vers_id == DocumentVersion.id)
.join(Document, DocumentVersion.doc_id == Document.id)
.filter(
or_(Document.valid_from.is_(None), func.date(Document.valid_from) <= current_date),
or_(Document.valid_to.is_(None), func.date(Document.valid_to) >= current_date)
)
.order_by(desc('similarity'))
)
debug_results = debug_query.all()
current_app.logger.debug("Debug: Similarity for all valid documents:")
for row in debug_results:
current_app.rag_tuning_logger.debug(f"Doc ID: {row.document_id}, "
f"Version ID: {row.version_id}, "
f"Embedding ID: {row.embedding_id}, "
f"Similarity: {row.similarity}")
current_app.rag_tuning_logger.debug(f'---------------------------------------\n')
except SQLAlchemyError as e:
current_app.logger.error(f'Error generating overview: {e}')
db.session.rollback()
if self.model_variables['rag_tuning']:
current_app.rag_tuning_logger.debug(f'Parameters for Retrieval of documents: \n')
current_app.rag_tuning_logger.debug(f'Similarity Threshold: {similarity_threshold}\n')
current_app.rag_tuning_logger.debug(f'K: {k}\n')
current_app.rag_tuning_logger.debug(f'---------------------------------------\n')
try:
current_date = get_date_in_timezone(self.tenant_info['timezone'])
# Subquery to find the latest version of each document
subquery = (
db.session.query(
DocumentVersion.doc_id,
func.max(DocumentVersion.id).label('latest_version_id')
)
.group_by(DocumentVersion.doc_id)
.subquery()
)
# Main query to filter embeddings
query_obj = (
db.session.query(db_class,
(1 - db_class.embedding.cosine_distance(query_embedding)).label('similarity'))
.join(DocumentVersion, db_class.doc_vers_id == DocumentVersion.id)
.join(Document, DocumentVersion.doc_id == Document.id)
.join(subquery, DocumentVersion.id == subquery.c.latest_version_id)
.filter(
or_(Document.valid_from.is_(None), func.date(Document.valid_from) <= current_date),
or_(Document.valid_to.is_(None), func.date(Document.valid_to) >= current_date),
(1 - db_class.embedding.cosine_distance(query_embedding)) > similarity_threshold,
Document.catalog_id == self._catalog_id
)
.order_by(desc('similarity'))
.limit(k)
)
if self.model_variables['rag_tuning']:
current_app.rag_tuning_logger.debug(f'Query executed for Retrieval of documents: \n')
current_app.rag_tuning_logger.debug(f'{query_obj.statement}\n')
current_app.rag_tuning_logger.debug(f'---------------------------------------\n')
res = query_obj.all()
if self.model_variables['rag_tuning']:
current_app.rag_tuning_logger.debug(f'Retrieved {len(res)} relevant documents \n')
current_app.rag_tuning_logger.debug(f'Data retrieved: \n')
current_app.rag_tuning_logger.debug(f'{res}\n')
current_app.rag_tuning_logger.debug(f'---------------------------------------\n')
result = []
for doc in res:
if self.model_variables['rag_tuning']:
current_app.rag_tuning_logger.debug(f'Document ID: {doc[0].id} - Distance: {doc[1]}\n')
current_app.rag_tuning_logger.debug(f'Chunk: \n {doc[0].chunk}\n\n')
result.append(f'SOURCE: {doc[0].id}\n\n{doc[0].chunk}\n\n')
except SQLAlchemyError as e:
current_app.logger.error(f'Error retrieving relevant documents: {e}')
db.session.rollback()
return []
return result
def _get_query_embedding(self, query: str):
embedding_model = self.model_variables['embedding_model']
query_embedding = embedding_model.embed_query(query)
return query_embedding