Files
eveAI/common/langchain/llm_metrics_handler.py
Josako b700cfac64 - Improvements on audio processing to limit CPU and memory usage
- Removed Portkey from the equation, and defined explicit monitoring using Langchain native code
- Optimization of Business Event logging
2024-10-02 14:11:46 +02:00

50 lines
1.7 KiB
Python

import time
from langchain.callbacks.base import BaseCallbackHandler
from typing import Dict, Any, List
from langchain.schema import LLMResult
from common.utils.business_event_context import current_event
from flask import current_app
class LLMMetricsHandler(BaseCallbackHandler):
def __init__(self):
self.total_tokens: int = 0
self.prompt_tokens: int = 0
self.completion_tokens: int = 0
self.start_time: float = 0
self.end_time: float = 0
self.total_time: float = 0
def reset(self):
self.total_tokens = 0
self.prompt_tokens = 0
self.completion_tokens = 0
self.start_time = 0
self.end_time = 0
self.total_time = 0
def on_llm_start(self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) -> None:
self.start_time = time.time()
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
self.end_time = time.time()
self.total_time = self.end_time - self.start_time
usage = response.llm_output.get('token_usage', {})
self.prompt_tokens += usage.get('prompt_tokens', 0)
self.completion_tokens += usage.get('completion_tokens', 0)
self.total_tokens = self.prompt_tokens + self.completion_tokens
metrics = self.get_metrics()
current_event.log_llm_metrics(metrics)
self.reset() # Reset for the next call
def get_metrics(self) -> Dict[str, int | float]:
return {
'total_tokens': self.total_tokens,
'prompt_tokens': self.prompt_tokens,
'completion_tokens': self.completion_tokens,
'time_elapsed': self.total_time,
'interaction_type': 'LLM',
}