- Selection Specialist - VA version - fully implemented - Correction of TRAICIE_ROLE_DEFINITION_SPECIALIST - adaptation to new style - Removal of 'debug' statements
112 lines
4.0 KiB
Python
112 lines
4.0 KiB
Python
import importlib
|
|
import json
|
|
from abc import ABC, abstractmethod, abstractproperty
|
|
from typing import Dict, Any, List, Optional, Tuple
|
|
|
|
from flask import current_app
|
|
from sqlalchemy import func, or_, desc
|
|
from sqlalchemy.exc import SQLAlchemyError
|
|
|
|
from common.extensions import db, cache_manager
|
|
from common.models.document import Document, DocumentVersion, Catalog, Retriever
|
|
from common.utils.model_utils import get_embedding_model_and_class
|
|
from eveai_chat_workers.retrievers.retriever_typing import RetrieverResult, RetrieverArguments, RetrieverMetadata
|
|
from config.logging_config import TuningLogger
|
|
|
|
|
|
class BaseRetriever(ABC):
|
|
"""Base class for all retrievers"""
|
|
|
|
def __init__(self, tenant_id: int, retriever_id: int):
|
|
self.tenant_id = tenant_id
|
|
self.retriever_id = retriever_id
|
|
self.retriever = Retriever.query.get_or_404(retriever_id)
|
|
self.catalog_id = self.retriever.catalog_id
|
|
self.tuning = self.retriever.tuning
|
|
self.tuning_logger = None
|
|
self._setup_tuning_logger()
|
|
self.embedding_model, self.embedding_model_class = (
|
|
get_embedding_model_and_class(tenant_id=tenant_id, catalog_id=self.catalog_id))
|
|
|
|
@property
|
|
@abstractmethod
|
|
def type(self) -> str:
|
|
"""The type of the retriever"""
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def type_version(self) -> str:
|
|
"""The type version of the retriever"""
|
|
raise NotImplementedError
|
|
|
|
def _setup_tuning_logger(self):
|
|
try:
|
|
self.tuning_logger = TuningLogger(
|
|
'tuning',
|
|
tenant_id=self.tenant_id,
|
|
retriever_id=self.retriever_id,
|
|
)
|
|
# Verify logger is working with a test message
|
|
if self.tuning:
|
|
self.tuning_logger.log_tuning('retriever', "Tuning logger initialized")
|
|
except Exception as e:
|
|
current_app.logger.error(f"Failed to setup tuning logger: {str(e)}")
|
|
raise
|
|
|
|
def _parse_metadata(self, metadata: Any) -> Dict[str, Any]:
|
|
"""
|
|
Parse metadata ensuring it's a dictionary
|
|
|
|
Args:
|
|
metadata: Input metadata which could be string, dict, or None
|
|
|
|
Returns:
|
|
Dict[str, Any]: Parsed metadata as dictionary
|
|
"""
|
|
if metadata is None:
|
|
return {}
|
|
|
|
if isinstance(metadata, dict):
|
|
return metadata
|
|
|
|
if isinstance(metadata, str):
|
|
try:
|
|
return json.loads(metadata)
|
|
except json.JSONDecodeError:
|
|
current_app.logger.warning(f"Failed to parse metadata JSON string: {metadata}")
|
|
return {}
|
|
|
|
current_app.logger.warning(f"Unexpected metadata type: {type(metadata)}")
|
|
return {}
|
|
|
|
def log_tuning(self, message: str, data: Dict[str, Any] = None) -> None:
|
|
if self.tuning and self.tuning_logger:
|
|
try:
|
|
self.tuning_logger.log_tuning('retriever', message, data)
|
|
except Exception as e:
|
|
current_app.logger.error(f"Processor: Error in tuning logging: {e}")
|
|
|
|
@abstractmethod
|
|
def retrieve(self, arguments: RetrieverArguments) -> List[RetrieverResult]:
|
|
"""
|
|
Retrieve relevant documents based on provided arguments
|
|
|
|
Args:
|
|
arguments: Dictionary of arguments for the retrieval operation
|
|
|
|
Returns:
|
|
List[Dict[str, Any]]: List of retrieved documents/content
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
|
|
def get_retriever_class(retriever_type: str, type_version: str):
|
|
major_minor = '_'.join(type_version.split('.')[:2])
|
|
retriever_config = cache_manager.retrievers_config_cache.get_config(retriever_type, type_version)
|
|
partner = retriever_config.get("partner", None)
|
|
if partner:
|
|
module_path = f"eveai_chat_workers.retrievers.{partner}.{retriever_type}.{major_minor}"
|
|
else:
|
|
module_path = f"eveai_chat_workers.retrievers.globals.{retriever_type}.{major_minor}"
|
|
module = importlib.import_module(module_path)
|
|
return module.RetrieverExecutor |