- Allow filtering on Tenant Types & searching for parts of Tenant names - Implement health checks - Start Prometheus monitoring (needs to be finalized) - Refine audio_processor and srt_processor to reduce duplicate code and support for larger files - Introduce repopack to reason in LLMs about the code
577 lines
26 KiB
Python
577 lines
26 KiB
Python
import io
|
|
import os
|
|
from datetime import datetime as dt, timezone as tz
|
|
|
|
from celery import states
|
|
from flask import current_app
|
|
# OpenAI imports
|
|
from langchain.text_splitter import MarkdownHeaderTextSplitter
|
|
from langchain_core.exceptions import LangChainException
|
|
from langchain_core.output_parsers import StrOutputParser
|
|
from langchain_core.prompts import ChatPromptTemplate
|
|
from langchain_core.runnables import RunnablePassthrough
|
|
from sqlalchemy.exc import SQLAlchemyError
|
|
|
|
from common.extensions import db, minio_client
|
|
from common.models.document import DocumentVersion, Embedding
|
|
from common.models.user import Tenant
|
|
from common.utils.celery_utils import current_celery
|
|
from common.utils.database import Database
|
|
from common.utils.model_utils import select_model_variables, create_language_template
|
|
from common.utils.os_utils import safe_remove, sync_folder
|
|
from eveai_workers.Processors.audio_processor import AudioProcessor
|
|
from eveai_workers.Processors.html_processor import HTMLProcessor
|
|
from eveai_workers.Processors.pdf_processor import PDFProcessor
|
|
from eveai_workers.Processors.srt_processor import SRTProcessor
|
|
|
|
|
|
# Healthcheck task
|
|
@current_celery.task(name='ping', queue='embeddings')
|
|
def ping():
|
|
return 'pong'
|
|
|
|
|
|
@current_celery.task(name='create_embeddings', queue='embeddings')
|
|
def create_embeddings(tenant_id, document_version_id):
|
|
current_app.logger.info(f'Creating embeddings for tenant {tenant_id} on document version {document_version_id}.')
|
|
|
|
try:
|
|
# Retrieve Tenant for which we are processing
|
|
tenant = Tenant.query.get(tenant_id)
|
|
if tenant is None:
|
|
raise Exception(f'Tenant {tenant_id} not found')
|
|
|
|
# Ensure we are working in the correct database schema
|
|
Database(tenant_id).switch_schema()
|
|
|
|
# Select variables to work with depending on tenant and model
|
|
model_variables = select_model_variables(tenant)
|
|
current_app.logger.debug(f'Model variables: {model_variables}')
|
|
|
|
# Retrieve document version to process
|
|
document_version = DocumentVersion.query.get(document_version_id)
|
|
if document_version is None:
|
|
raise Exception(f'Document version {document_version_id} not found')
|
|
|
|
except Exception as e:
|
|
current_app.logger.error(f'Create Embeddings request received '
|
|
f'for non existing document version {document_version_id} '
|
|
f'for tenant {tenant_id}, '
|
|
f'error: {e}')
|
|
raise
|
|
|
|
try:
|
|
db.session.add(document_version)
|
|
|
|
# start processing
|
|
document_version.processing = True
|
|
document_version.processing_started_at = dt.now(tz.utc)
|
|
document_version.processing_finished_at = None
|
|
document_version.processing_error = None
|
|
|
|
db.session.commit()
|
|
except SQLAlchemyError as e:
|
|
current_app.logger.error(f'Unable to save Embedding status information '
|
|
f'in document version {document_version_id} '
|
|
f'for tenant {tenant_id}')
|
|
raise
|
|
|
|
delete_embeddings_for_document_version(document_version)
|
|
|
|
try:
|
|
match document_version.file_type:
|
|
case 'pdf':
|
|
process_pdf(tenant, model_variables, document_version)
|
|
case 'html':
|
|
process_html(tenant, model_variables, document_version)
|
|
case 'srt':
|
|
process_srt(tenant, model_variables, document_version)
|
|
case 'mp4' | 'mp3' | 'ogg':
|
|
process_audio(tenant, model_variables, document_version)
|
|
case _:
|
|
raise Exception(f'No functionality defined for file type {document_version.file_type} '
|
|
f'for tenant {tenant_id} '
|
|
f'while creating embeddings for document version {document_version_id}')
|
|
|
|
except Exception as e:
|
|
current_app.logger.error(f'Error creating embeddings for tenant {tenant_id} '
|
|
f'on document version {document_version_id} '
|
|
f'error: {e}')
|
|
document_version.processing = False
|
|
document_version.processing_finished_at = dt.now(tz.utc)
|
|
document_version.processing_error = str(e)[:255]
|
|
db.session.commit()
|
|
create_embeddings.update_state(state=states.FAILURE)
|
|
raise
|
|
|
|
|
|
def delete_embeddings_for_document_version(document_version):
|
|
embeddings_to_delete = db.session.query(Embedding).filter_by(doc_vers_id=document_version.id).all()
|
|
for embedding in embeddings_to_delete:
|
|
db.session.delete(embedding)
|
|
try:
|
|
db.session.commit()
|
|
current_app.logger.info(f'Deleted embeddings for document version {document_version.id}')
|
|
except SQLAlchemyError as e:
|
|
current_app.logger.error(f'Unable to delete embeddings for document version {document_version.id}')
|
|
raise
|
|
|
|
|
|
def process_pdf(tenant, model_variables, document_version):
|
|
processor = PDFProcessor(tenant, model_variables, document_version)
|
|
markdown, title = processor.process()
|
|
|
|
# Process markdown and embed
|
|
embed_markdown(tenant, model_variables, document_version, markdown, title)
|
|
|
|
|
|
def process_html(tenant, model_variables, document_version):
|
|
processor = HTMLProcessor(tenant, model_variables, document_version)
|
|
markdown, title = processor.process()
|
|
|
|
# Process markdown and embed
|
|
embed_markdown(tenant, model_variables, document_version, markdown, title)
|
|
|
|
|
|
def process_audio(tenant, model_variables, document_version):
|
|
processor = AudioProcessor(tenant, model_variables, document_version)
|
|
markdown, title = processor.process()
|
|
|
|
# Process markdown and embed
|
|
embed_markdown(tenant, model_variables, document_version, markdown, title)
|
|
|
|
|
|
def process_srt(tenant, model_variables, document_version):
|
|
processor = SRTProcessor(tenant, model_variables, document_version)
|
|
markdown, title = processor.process()
|
|
|
|
# Process markdown and embed
|
|
embed_markdown(tenant, model_variables, document_version, markdown, title)
|
|
|
|
|
|
def embed_markdown(tenant, model_variables, document_version, markdown, title):
|
|
# Create potential chunks
|
|
potential_chunks = create_potential_chunks_for_markdown(tenant.id, document_version, f"{document_version.id}.md")
|
|
|
|
# Combine chunks for embedding
|
|
chunks = combine_chunks_for_markdown(potential_chunks, model_variables['min_chunk_size'],
|
|
model_variables['max_chunk_size'])
|
|
|
|
# Enrich chunks
|
|
enriched_chunks = enrich_chunks(tenant, model_variables, document_version, title, chunks)
|
|
|
|
# Create embeddings
|
|
embeddings = embed_chunks(tenant, model_variables, document_version, enriched_chunks)
|
|
|
|
# Update document version and save embeddings
|
|
try:
|
|
db.session.add(document_version)
|
|
document_version.processing_finished_at = dt.now(tz.utc)
|
|
document_version.processing = False
|
|
db.session.add_all(embeddings)
|
|
db.session.commit()
|
|
except SQLAlchemyError as e:
|
|
current_app.logger.error(f'Error saving embedding information for tenant {tenant.id} '
|
|
f'on HTML, document version {document_version.id}'
|
|
f'error: {e}')
|
|
raise
|
|
|
|
current_app.logger.info(f'Embeddings created successfully for tenant {tenant.id} '
|
|
f'on document version {document_version.id} :-)')
|
|
|
|
|
|
def enrich_chunks(tenant, model_variables, document_version, title, chunks):
|
|
current_app.logger.debug(f'Enriching chunks for tenant {tenant.id} '
|
|
f'on document version {document_version.id}')
|
|
|
|
summary = ''
|
|
if len(chunks) > 1:
|
|
summary = summarize_chunk(tenant, model_variables, document_version, chunks[0])
|
|
|
|
chunk_total_context = (f'Filename: {document_version.file_name}\n'
|
|
f'User Context:\n{document_version.user_context}\n\n'
|
|
f'User Metadata:\n{document_version.user_metadata}\n\n'
|
|
f'Title: {title}\n'
|
|
f'Summary:\n{summary}\n'
|
|
f'System Context:\n{document_version.system_context}\n\n'
|
|
f'System Metadata:\n{document_version.system_metadata}\n\n'
|
|
)
|
|
enriched_chunks = []
|
|
initial_chunk = (f'Filename: {document_version.file_name}\n'
|
|
f'User Context:\n{document_version.user_context}\n\n'
|
|
f'User Metadata:\n{document_version.user_metadata}\n\n'
|
|
f'Title: {title}\n'
|
|
f'System Context:\n{document_version.system_context}\n\n'
|
|
f'System Metadata:\n{document_version.system_metadata}\n\n'
|
|
f'{chunks[0]}'
|
|
)
|
|
|
|
enriched_chunks.append(initial_chunk)
|
|
for chunk in chunks[1:]:
|
|
enriched_chunk = f'{chunk_total_context}\n{chunk}'
|
|
enriched_chunks.append(enriched_chunk)
|
|
|
|
current_app.logger.debug(f'Finished enriching chunks for tenant {tenant.id} '
|
|
f'on document version {document_version.id}')
|
|
|
|
return enriched_chunks
|
|
|
|
|
|
def summarize_chunk(tenant, model_variables, document_version, chunk):
|
|
current_app.logger.debug(f'Summarizing chunk for tenant {tenant.id} '
|
|
f'on document version {document_version.id}')
|
|
llm = model_variables['llm']
|
|
template = model_variables['summary_template']
|
|
language_template = create_language_template(template, document_version.language)
|
|
summary_prompt = ChatPromptTemplate.from_template(language_template)
|
|
setup = RunnablePassthrough()
|
|
output_parser = StrOutputParser()
|
|
|
|
chain = setup | summary_prompt | llm | output_parser
|
|
|
|
try:
|
|
current_app.logger.debug(f'Starting summarizing chunk for tenant {tenant.id} '
|
|
f'on document version {document_version.id}')
|
|
summary = chain.invoke({"text": chunk})
|
|
current_app.logger.debug(f'Finished summarizing chunk for tenant {tenant.id} '
|
|
f'on document version {document_version.id}.')
|
|
return summary
|
|
except LangChainException as e:
|
|
current_app.logger.error(f'Error creating summary for chunk enrichment for tenant {tenant.id} '
|
|
f'on document version {document_version.id} '
|
|
f'error: {e}')
|
|
raise
|
|
|
|
|
|
def embed_chunks(tenant, model_variables, document_version, chunks):
|
|
current_app.logger.debug(f'Embedding chunks for tenant {tenant.id} '
|
|
f'on document version {document_version.id}')
|
|
embedding_model = model_variables['embedding_model']
|
|
|
|
try:
|
|
embeddings = embedding_model.embed_documents(chunks)
|
|
current_app.logger.debug(f'Finished embedding chunks for tenant {tenant.id} '
|
|
f'on document version {document_version.id}')
|
|
except LangChainException as e:
|
|
current_app.logger.error(f'Error creating embeddings for tenant {tenant.id} '
|
|
f'on document version {document_version.id} while calling OpenAI API'
|
|
f'error: {e}')
|
|
raise
|
|
|
|
# Add embeddings to the database
|
|
new_embeddings = []
|
|
for chunk, embedding in zip(chunks, embeddings):
|
|
new_embedding = model_variables['embedding_db_model']()
|
|
new_embedding.document_version = document_version
|
|
new_embedding.active = True
|
|
new_embedding.chunk = chunk
|
|
new_embedding.embedding = embedding
|
|
new_embeddings.append(new_embedding)
|
|
|
|
return new_embeddings
|
|
|
|
|
|
def log_parsing_info(tenant, tags, included_elements, excluded_elements, excluded_classes, elements_to_parse):
|
|
if tenant.embed_tuning:
|
|
current_app.embed_tuning_logger.debug(f'Tags to parse: {tags}')
|
|
current_app.embed_tuning_logger.debug(f'Included Elements: {included_elements}')
|
|
current_app.embed_tuning_logger.debug(f'Excluded Elements: {excluded_elements}')
|
|
current_app.embed_tuning_logger.debug(f'Excluded Classes: {excluded_classes}')
|
|
current_app.embed_tuning_logger.debug(f'Found {len(elements_to_parse)} elements to parse')
|
|
current_app.embed_tuning_logger.debug(f'First element to parse: {elements_to_parse[0]}')
|
|
|
|
|
|
# def process_youtube(tenant, model_variables, document_version):
|
|
# download_file_name = f'{document_version.id}.mp4'
|
|
# compressed_file_name = f'{document_version.id}.mp3'
|
|
# transcription_file_name = f'{document_version.id}.txt'
|
|
# markdown_file_name = f'{document_version.id}.md'
|
|
#
|
|
# # Remove existing files (in case of a re-processing of the file
|
|
# minio_client.delete_document_file(tenant.id, document_version.doc_id, document_version.language,
|
|
# document_version.id, download_file_name)
|
|
# minio_client.delete_document_file(tenant.id, document_version.doc_id, document_version.language,
|
|
# document_version.id, compressed_file_name)
|
|
# minio_client.delete_document_file(tenant.id, document_version.doc_id, document_version.language,
|
|
# document_version.id, transcription_file_name)
|
|
# minio_client.delete_document_file(tenant.id, document_version.doc_id, document_version.language,
|
|
# document_version.id, markdown_file_name)
|
|
#
|
|
# of, title, description, author = download_youtube(document_version.url, tenant.id, document_version,
|
|
# download_file_name)
|
|
# document_version.system_context = f'Title: {title}\nDescription: {description}\nAuthor: {author}'
|
|
# compress_audio(tenant.id, document_version, download_file_name, compressed_file_name)
|
|
# transcribe_audio(tenant.id, document_version, compressed_file_name, transcription_file_name, model_variables)
|
|
# annotate_transcription(tenant, document_version, transcription_file_name, markdown_file_name, model_variables)
|
|
#
|
|
# potential_chunks = create_potential_chunks_for_markdown(tenant.id, document_version, markdown_file_name)
|
|
# actual_chunks = combine_chunks_for_markdown(potential_chunks, model_variables['min_chunk_size'],
|
|
# model_variables['max_chunk_size'])
|
|
#
|
|
# enriched_chunks = enrich_chunks(tenant, document_version, actual_chunks)
|
|
# embeddings = embed_chunks(tenant, model_variables, document_version, enriched_chunks)
|
|
#
|
|
# try:
|
|
# db.session.add(document_version)
|
|
# document_version.processing_finished_at = dt.now(tz.utc)
|
|
# document_version.processing = False
|
|
# db.session.add_all(embeddings)
|
|
# db.session.commit()
|
|
# except SQLAlchemyError as e:
|
|
# current_app.logger.error(f'Error saving embedding information for tenant {tenant.id} '
|
|
# f'on Youtube document version {document_version.id}'
|
|
# f'error: {e}')
|
|
# raise
|
|
#
|
|
# current_app.logger.info(f'Embeddings created successfully for tenant {tenant.id} '
|
|
# f'on Youtube document version {document_version.id} :-)')
|
|
#
|
|
#
|
|
# def download_youtube(url, tenant_id, document_version, file_name):
|
|
# try:
|
|
# current_app.logger.info(f'Downloading YouTube video: {url} for tenant: {tenant_id}')
|
|
# yt = YouTube(url)
|
|
# stream = yt.streams.get_audio_only()
|
|
#
|
|
# with tempfile.NamedTemporaryFile(delete=False) as temp_file:
|
|
# stream.download(output_path=temp_file.name)
|
|
# with open(temp_file.name, 'rb') as f:
|
|
# file_data = f.read()
|
|
#
|
|
# minio_client.upload_document_file(tenant_id, document_version.doc_id, document_version.language,
|
|
# document_version.id,
|
|
# file_name, file_data)
|
|
#
|
|
# current_app.logger.info(f'Downloaded YouTube video: {url} for tenant: {tenant_id}')
|
|
# return file_name, yt.title, yt.description, yt.author
|
|
# except Exception as e:
|
|
# current_app.logger.error(f'Error downloading YouTube video: {url} for tenant: {tenant_id} with error: {e}')
|
|
# raise
|
|
#
|
|
#
|
|
# def compress_audio(tenant_id, document_version, input_file, output_file):
|
|
# try:
|
|
# current_app.logger.info(f'Compressing audio for tenant: {tenant_id}')
|
|
#
|
|
# input_data = minio_client.download_document_file(tenant_id, document_version.doc_id, document_version.language,
|
|
# document_version.id, input_file)
|
|
#
|
|
# with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_input:
|
|
# temp_input.write(input_data)
|
|
# temp_input.flush()
|
|
#
|
|
# with tempfile.NamedTemporaryFile(delete=False, suffix='.mp3') as temp_output:
|
|
# result = subprocess.run(
|
|
# ['ffmpeg', '-i', temp_input.name, '-b:a', '64k', '-f', 'mp3', temp_output.name],
|
|
# capture_output=True,
|
|
# text=True
|
|
# )
|
|
#
|
|
# if result.returncode != 0:
|
|
# raise Exception(f"Compression failed: {result.stderr}")
|
|
#
|
|
# with open(temp_output.name, 'rb') as f:
|
|
# compressed_data = f.read()
|
|
#
|
|
# minio_client.upload_document_file(tenant_id, document_version.doc_id, document_version.language,
|
|
# document_version.id,
|
|
# output_file, compressed_data)
|
|
#
|
|
# current_app.logger.info(f'Compressed audio for tenant: {tenant_id}')
|
|
# except Exception as e:
|
|
# current_app.logger.error(f'Error compressing audio for tenant: {tenant_id} with error: {e}')
|
|
# raise
|
|
#
|
|
#
|
|
# def transcribe_audio(tenant_id, document_version, input_file, output_file, model_variables):
|
|
# try:
|
|
# current_app.logger.info(f'Transcribing audio for tenant: {tenant_id}')
|
|
# client = model_variables['transcription_client']
|
|
# model = model_variables['transcription_model']
|
|
#
|
|
# # Download the audio file from MinIO
|
|
# audio_data = minio_client.download_document_file(tenant_id, document_version.doc_id, document_version.language,
|
|
# document_version.id, input_file)
|
|
#
|
|
# # Load the audio data into pydub
|
|
# audio = AudioSegment.from_mp3(io.BytesIO(audio_data))
|
|
#
|
|
# # Define segment length (e.g., 10 minutes)
|
|
# segment_length = 10 * 60 * 1000 # 10 minutes in milliseconds
|
|
#
|
|
# transcriptions = []
|
|
#
|
|
# # Split audio into segments and transcribe each
|
|
# for i, chunk in enumerate(audio[::segment_length]):
|
|
# current_app.logger.debug(f'Transcribing chunk {i + 1} of {len(audio) // segment_length + 1}')
|
|
#
|
|
# with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_audio:
|
|
# chunk.export(temp_audio.name, format="mp3")
|
|
#
|
|
# with open(temp_audio.name, 'rb') as audio_segment:
|
|
# transcription = client.audio.transcriptions.create(
|
|
# file=audio_segment,
|
|
# model=model,
|
|
# language=document_version.language,
|
|
# response_format='verbose_json',
|
|
# )
|
|
#
|
|
# transcriptions.append(transcription.text)
|
|
#
|
|
# os.unlink(temp_audio.name) # Delete the temporary file
|
|
#
|
|
# # Combine all transcriptions
|
|
# full_transcription = " ".join(transcriptions)
|
|
#
|
|
# # Upload the full transcription to MinIO
|
|
# minio_client.upload_document_file(
|
|
# tenant_id,
|
|
# document_version.doc_id,
|
|
# document_version.language,
|
|
# document_version.id,
|
|
# output_file,
|
|
# full_transcription.encode('utf-8')
|
|
# )
|
|
#
|
|
# current_app.logger.info(f'Transcribed audio for tenant: {tenant_id}')
|
|
# except Exception as e:
|
|
# current_app.logger.error(f'Error transcribing audio for tenant: {tenant_id}, with error: {e}')
|
|
# raise
|
|
#
|
|
#
|
|
# def annotate_transcription(tenant, document_version, input_file, output_file, model_variables):
|
|
# try:
|
|
# current_app.logger.debug(f'Annotating transcription for tenant {tenant.id}')
|
|
#
|
|
# char_splitter = CharacterTextSplitter(separator='.',
|
|
# chunk_size=model_variables['annotation_chunk_length'],
|
|
# chunk_overlap=0)
|
|
#
|
|
# headers_to_split_on = [
|
|
# ("#", "Header 1"),
|
|
# ("##", "Header 2"),
|
|
# ]
|
|
# markdown_splitter = MarkdownHeaderTextSplitter(headers_to_split_on, strip_headers=False)
|
|
#
|
|
# llm = model_variables['llm']
|
|
# template = model_variables['transcript_template']
|
|
# language_template = create_language_template(template, document_version.language)
|
|
# transcript_prompt = ChatPromptTemplate.from_template(language_template)
|
|
# setup = RunnablePassthrough()
|
|
# output_parser = StrOutputParser()
|
|
#
|
|
# # Download the transcription file from MinIO
|
|
# transcript_data = minio_client.download_document_file(tenant.id, document_version.doc_id,
|
|
# document_version.language, document_version.id,
|
|
# input_file)
|
|
# transcript = transcript_data.decode('utf-8')
|
|
#
|
|
# chain = setup | transcript_prompt | llm | output_parser
|
|
#
|
|
# chunks = char_splitter.split_text(transcript)
|
|
# all_markdown_chunks = []
|
|
# last_markdown_chunk = ''
|
|
# for chunk in chunks:
|
|
# current_app.logger.debug(f'Annotating next chunk of {len(chunks)} for tenant {tenant.id}')
|
|
# full_input = last_markdown_chunk + '\n' + chunk
|
|
# if tenant.embed_tuning:
|
|
# current_app.embed_tuning_logger.debug(f'Annotating chunk: \n '
|
|
# f'------------------\n'
|
|
# f'{full_input}\n'
|
|
# f'------------------\n')
|
|
# input_transcript = {'transcript': full_input}
|
|
# markdown = chain.invoke(input_transcript)
|
|
# # GPT-4o returns some kind of content description: ```markdown <text> ```
|
|
# if markdown.startswith("```markdown"):
|
|
# markdown = "\n".join(markdown.strip().split("\n")[1:-1])
|
|
# if tenant.embed_tuning:
|
|
# current_app.embed_tuning_logger.debug(f'Markdown Received: \n '
|
|
# f'------------------\n'
|
|
# f'{markdown}\n'
|
|
# f'------------------\n')
|
|
# md_header_splits = markdown_splitter.split_text(markdown)
|
|
# markdown_chunks = [doc.page_content for doc in md_header_splits]
|
|
# # claude-3.5-sonnet returns introductory text
|
|
# if not markdown_chunks[0].startswith('#'):
|
|
# markdown_chunks.pop(0)
|
|
# last_markdown_chunk = markdown_chunks[-1]
|
|
# last_markdown_chunk = "\n".join(markdown.strip().split("\n")[1:])
|
|
# markdown_chunks.pop()
|
|
# all_markdown_chunks += markdown_chunks
|
|
#
|
|
# all_markdown_chunks += [last_markdown_chunk]
|
|
#
|
|
# annotated_transcript = '\n'.join(all_markdown_chunks)
|
|
#
|
|
# # Upload the annotated transcript to MinIO
|
|
# minio_client.upload_document_file(
|
|
# tenant.id,
|
|
# document_version.doc_id,
|
|
# document_version.language,
|
|
# document_version.id,
|
|
# output_file,
|
|
# annotated_transcript.encode('utf-8')
|
|
# )
|
|
#
|
|
# current_app.logger.info(f'Annotated transcription for tenant {tenant.id}')
|
|
# except Exception as e:
|
|
# current_app.logger.error(f'Error annotating transcription for tenant {tenant.id}, with error: {e}')
|
|
# raise
|
|
|
|
|
|
def create_potential_chunks_for_markdown(tenant_id, document_version, input_file):
|
|
try:
|
|
current_app.logger.info(f'Creating potential chunks for tenant {tenant_id}')
|
|
|
|
# Download the markdown file from MinIO
|
|
markdown_data = minio_client.download_document_file(tenant_id,
|
|
document_version.doc_id,
|
|
document_version.language,
|
|
document_version.id,
|
|
input_file
|
|
)
|
|
markdown = markdown_data.decode('utf-8')
|
|
|
|
headers_to_split_on = [
|
|
("#", "Header 1"),
|
|
("##", "Header 2"),
|
|
]
|
|
|
|
markdown_splitter = MarkdownHeaderTextSplitter(headers_to_split_on, strip_headers=False)
|
|
md_header_splits = markdown_splitter.split_text(markdown)
|
|
potential_chunks = [doc.page_content for doc in md_header_splits]
|
|
|
|
current_app.logger.debug(f'Created {len(potential_chunks)} potential chunks for tenant {tenant_id}')
|
|
return potential_chunks
|
|
except Exception as e:
|
|
current_app.logger.error(f'Error creating potential chunks for tenant {tenant_id}, with error: {e}')
|
|
raise
|
|
|
|
|
|
def combine_chunks_for_markdown(potential_chunks, min_chars, max_chars):
|
|
actual_chunks = []
|
|
current_chunk = ""
|
|
current_length = 0
|
|
|
|
for chunk in potential_chunks:
|
|
chunk_length = len(chunk)
|
|
|
|
if current_length + chunk_length > max_chars:
|
|
if current_length >= min_chars:
|
|
actual_chunks.append(current_chunk)
|
|
current_chunk = chunk
|
|
current_length = chunk_length
|
|
else:
|
|
# If the combined chunk is still less than max_chars, keep adding
|
|
current_chunk += f'\n{chunk}'
|
|
current_length += chunk_length
|
|
else:
|
|
current_chunk += f'\n{chunk}'
|
|
current_length += chunk_length
|
|
|
|
# Handle the last chunk
|
|
if current_chunk and current_length >= 0:
|
|
actual_chunks.append(current_chunk)
|
|
|
|
return actual_chunks
|