Files
eveAI/eveai_chat_workers/specialists/base_specialist.py
Josako b6ee7182de - Adding Prometheus and grafana services in development
- Adding Prometheus metrics to the business events
- Ensure asynchronous behaviour of crewai specialists.
- Adapt Business events to working in mixed synchronous / asynchronous contexts
- Extend business events with specialist information
- Started adding a grafana dashboard (TBC)
2025-03-24 16:39:22 +01:00

107 lines
3.9 KiB
Python

import importlib
from abc import ABC, abstractmethod
from typing import Dict, Any, List
from flask import current_app
from common.models.interaction import SpecialistRetriever
from common.utils.execution_progress import ExecutionProgressTracker
from config.logging_config import TuningLogger
from eveai_chat_workers.retrievers.base import BaseRetriever
from eveai_chat_workers.retrievers.registry import RetrieverRegistry
from eveai_chat_workers.specialists.specialist_typing import SpecialistArguments, SpecialistResult
class BaseSpecialistExecutor(ABC):
"""Base class for all specialists"""
def __init__(self, tenant_id: int, specialist_id: int, session_id: str, task_id: str):
self.tenant_id = tenant_id
self.specialist_id = specialist_id
self.session_id = session_id
self.task_id = task_id
self.tuning = False
self.tuning_logger = None
self._setup_tuning_logger()
self.ept = ExecutionProgressTracker()
@property
@abstractmethod
def type(self) -> str:
"""The type of the specialist"""
raise NotImplementedError
@property
@abstractmethod
def type_version(self) -> str:
"""The type version of the specialist"""
raise NotImplementedError
def _initialize_retrievers(self) -> List[BaseRetriever]:
"""Initialize all retrievers associated with this specialist"""
retrievers = []
# Get retriever associations from database
specialist_retrievers = (
SpecialistRetriever.query
.filter_by(specialist_id=self.specialist_id)
.all()
)
self.log_tuning("_initialize_retrievers", {"Nr of retrievers": len(specialist_retrievers)})
for spec_retriever in specialist_retrievers:
# Get retriever configuration from database
retriever = spec_retriever.retriever
retriever_class = RetrieverRegistry.get_retriever_class(retriever.type)
self.log_tuning("_initialize_retrievers", {
"Retriever id": spec_retriever.retriever_id,
"Retriever Type": retriever.type,
"Retriever Class": str(retriever_class),
})
# Initialize retriever with its configuration
retrievers.append(
retriever_class(
tenant_id=self.tenant_id,
retriever_id=retriever.id,
)
)
return retrievers
def _setup_tuning_logger(self):
try:
self.tuning_logger = TuningLogger(
'tuning',
tenant_id=self.tenant_id,
specialist_id=self.specialist_id,
)
# Verify logger is working with a test message
if self.tuning:
self.tuning_logger.log_tuning('specialist', "Tuning logger initialized")
except Exception as e:
current_app.logger.error(f"Failed to setup tuning logger: {str(e)}")
raise
def log_tuning(self, message: str, data: Dict[str, Any] = None) -> None:
if self.tuning and self.tuning_logger:
try:
self.tuning_logger.log_tuning('specialist', message, data)
except Exception as e:
current_app.logger.error(f"Processor: Error in tuning logging: {e}")
def update_progress(self, processing_type, data) -> None:
self.ept.send_update(self.task_id, processing_type, data)
@abstractmethod
def execute_specialist(self, arguments: SpecialistArguments) -> SpecialistResult:
"""Execute the specialist's logic"""
raise NotImplementedError
def get_specialist_class(specialist_type: str, type_version: str):
major_minor = '_'.join(type_version.split('.')[:2])
module_path = f"eveai_chat_workers.specialists.{specialist_type}.{major_minor}"
module = importlib.import_module(module_path)
return module.SpecialistExecutor