Files
eveAI/eveai_workers/tasks.py

359 lines
16 KiB
Python

import io
import os
from datetime import datetime as dt, timezone as tz
from celery import states
from flask import current_app
# OpenAI imports
from langchain.text_splitter import MarkdownHeaderTextSplitter
from langchain_core.exceptions import LangChainException
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from sqlalchemy.exc import SQLAlchemyError
from common.extensions import db, minio_client
from common.models.document import DocumentVersion, Embedding
from common.models.user import Tenant
from common.utils.celery_utils import current_celery
from common.utils.database import Database
from common.utils.model_utils import select_model_variables, create_language_template
from common.utils.os_utils import safe_remove, sync_folder
from eveai_workers.Processors.audio_processor import AudioProcessor
from eveai_workers.Processors.html_processor import HTMLProcessor
from eveai_workers.Processors.pdf_processor import PDFProcessor
from eveai_workers.Processors.srt_processor import SRTProcessor
from common.utils.business_event import BusinessEvent
from common.utils.business_event_context import current_event
# Healthcheck task
@current_celery.task(name='ping', queue='embeddings')
def ping():
return 'pong'
@current_celery.task(name='create_embeddings', queue='embeddings')
def create_embeddings(tenant_id, document_version_id):
# BusinessEvent creates a context, which is why we need to use it with a with block
with BusinessEvent('Create Embeddings', tenant_id, document_version_id=document_version_id):
current_app.logger.info(f'Creating embeddings for tenant {tenant_id} on document version {document_version_id}')
try:
# Retrieve Tenant for which we are processing
tenant = Tenant.query.get(tenant_id)
if tenant is None:
raise Exception(f'Tenant {tenant_id} not found')
# Ensure we are working in the correct database schema
Database(tenant_id).switch_schema()
# Select variables to work with depending on tenant and model
model_variables = select_model_variables(tenant)
current_app.logger.debug(f'Model variables: {model_variables}')
# Retrieve document version to process
document_version = DocumentVersion.query.get(document_version_id)
if document_version is None:
raise Exception(f'Document version {document_version_id} not found')
except Exception as e:
current_app.logger.error(f'Create Embeddings request received '
f'for non existing document version {document_version_id} '
f'for tenant {tenant_id}, '
f'error: {e}')
raise
try:
db.session.add(document_version)
# start processing
document_version.processing = True
document_version.processing_started_at = dt.now(tz.utc)
document_version.processing_finished_at = None
document_version.processing_error = None
db.session.commit()
except SQLAlchemyError as e:
current_app.logger.error(f'Unable to save Embedding status information '
f'in document version {document_version_id} '
f'for tenant {tenant_id}')
raise
delete_embeddings_for_document_version(document_version)
try:
match document_version.file_type:
case 'pdf':
process_pdf(tenant, model_variables, document_version)
case 'html':
process_html(tenant, model_variables, document_version)
case 'srt':
process_srt(tenant, model_variables, document_version)
case 'mp4' | 'mp3' | 'ogg':
process_audio(tenant, model_variables, document_version)
case _:
raise Exception(f'No functionality defined for file type {document_version.file_type} '
f'for tenant {tenant_id} '
f'while creating embeddings for document version {document_version_id}')
current_event.log("Finished Embedding Creation Task")
except Exception as e:
current_app.logger.error(f'Error creating embeddings for tenant {tenant_id} '
f'on document version {document_version_id} '
f'error: {e}')
document_version.processing = False
document_version.processing_finished_at = dt.now(tz.utc)
document_version.processing_error = str(e)[:255]
db.session.commit()
create_embeddings.update_state(state=states.FAILURE)
raise
def delete_embeddings_for_document_version(document_version):
embeddings_to_delete = db.session.query(Embedding).filter_by(doc_vers_id=document_version.id).all()
for embedding in embeddings_to_delete:
db.session.delete(embedding)
try:
db.session.commit()
current_app.logger.info(f'Deleted embeddings for document version {document_version.id}')
except SQLAlchemyError as e:
current_app.logger.error(f'Unable to delete embeddings for document version {document_version.id}')
raise
def process_pdf(tenant, model_variables, document_version):
with current_event.create_span("PDF Processing"):
processor = PDFProcessor(tenant, model_variables, document_version)
markdown, title = processor.process()
# Process markdown and embed
with current_event.create_span("Embedding"):
embed_markdown(tenant, model_variables, document_version, markdown, title)
def process_html(tenant, model_variables, document_version):
with current_event.create_span("HTML Processing"):
processor = HTMLProcessor(tenant, model_variables, document_version)
markdown, title = processor.process()
# Process markdown and embed
with current_event.create_span("Embedding"):
embed_markdown(tenant, model_variables, document_version, markdown, title)
def process_audio(tenant, model_variables, document_version):
with current_event.create_span("Audio Processing"):
processor = AudioProcessor(tenant, model_variables, document_version)
markdown, title = processor.process()
# Process markdown and embed
with current_event.create_span("Embedding"):
embed_markdown(tenant, model_variables, document_version, markdown, title)
def process_srt(tenant, model_variables, document_version):
with current_event.create_span("SRT Processing"):
processor = SRTProcessor(tenant, model_variables, document_version)
markdown, title = processor.process()
# Process markdown and embed
with current_event.create_span("Embedding"):
embed_markdown(tenant, model_variables, document_version, markdown, title)
def embed_markdown(tenant, model_variables, document_version, markdown, title):
# Create potential chunks
potential_chunks = create_potential_chunks_for_markdown(tenant.id, document_version, f"{document_version.id}.md")
# Combine chunks for embedding
chunks = combine_chunks_for_markdown(potential_chunks, model_variables['min_chunk_size'],
model_variables['max_chunk_size'])
# Enrich chunks
enriched_chunks = enrich_chunks(tenant, model_variables, document_version, title, chunks)
# Create embeddings
embeddings = embed_chunks(tenant, model_variables, document_version, enriched_chunks)
# Update document version and save embeddings
try:
db.session.add(document_version)
document_version.processing_finished_at = dt.now(tz.utc)
document_version.processing = False
db.session.add_all(embeddings)
db.session.commit()
except SQLAlchemyError as e:
current_app.logger.error(f'Error saving embedding information for tenant {tenant.id} '
f'on HTML, document version {document_version.id}'
f'error: {e}')
raise
current_app.logger.info(f'Embeddings created successfully for tenant {tenant.id} '
f'on document version {document_version.id} :-)')
def enrich_chunks(tenant, model_variables, document_version, title, chunks):
current_event.log("Starting Enriching Chunks Processing")
current_app.logger.debug(f'Enriching chunks for tenant {tenant.id} '
f'on document version {document_version.id}')
summary = ''
if len(chunks) > 1:
summary = summarize_chunk(tenant, model_variables, document_version, chunks[0])
chunk_total_context = (f'Filename: {document_version.file_name}\n'
f'User Context:\n{document_version.user_context}\n\n'
f'User Metadata:\n{document_version.user_metadata}\n\n'
f'Title: {title}\n'
f'Summary:\n{summary}\n'
f'System Context:\n{document_version.system_context}\n\n'
f'System Metadata:\n{document_version.system_metadata}\n\n'
)
enriched_chunks = []
initial_chunk = (f'Filename: {document_version.file_name}\n'
f'User Context:\n{document_version.user_context}\n\n'
f'User Metadata:\n{document_version.user_metadata}\n\n'
f'Title: {title}\n'
f'System Context:\n{document_version.system_context}\n\n'
f'System Metadata:\n{document_version.system_metadata}\n\n'
f'{chunks[0]}'
)
enriched_chunks.append(initial_chunk)
for chunk in chunks[1:]:
enriched_chunk = f'{chunk_total_context}\n{chunk}'
enriched_chunks.append(enriched_chunk)
current_app.logger.debug(f'Finished enriching chunks for tenant {tenant.id} '
f'on document version {document_version.id}')
current_event.log("Finished Enriching Chunks Processing")
return enriched_chunks
def summarize_chunk(tenant, model_variables, document_version, chunk):
current_event.log("Starting Summarizing Chunk")
current_app.logger.debug(f'Summarizing chunk for tenant {tenant.id} '
f'on document version {document_version.id}')
llm = model_variables['llm']
template = model_variables['summary_template']
language_template = create_language_template(template, document_version.language)
summary_prompt = ChatPromptTemplate.from_template(language_template)
setup = RunnablePassthrough()
output_parser = StrOutputParser()
chain = setup | summary_prompt | llm | output_parser
try:
current_app.logger.debug(f'Starting summarizing chunk for tenant {tenant.id} '
f'on document version {document_version.id}')
summary = chain.invoke({"text": chunk})
current_app.logger.debug(f'Finished summarizing chunk for tenant {tenant.id} '
f'on document version {document_version.id}.')
current_event.log("Finished Summarizing Chunk")
return summary
except LangChainException as e:
current_app.logger.error(f'Error creating summary for chunk enrichment for tenant {tenant.id} '
f'on document version {document_version.id} '
f'error: {e}')
raise
def embed_chunks(tenant, model_variables, document_version, chunks):
current_event.log("Starting Embedding Chunks Processing")
current_app.logger.debug(f'Embedding chunks for tenant {tenant.id} '
f'on document version {document_version.id}')
embedding_model = model_variables['embedding_model']
try:
embeddings = embedding_model.embed_documents(chunks)
current_app.logger.debug(f'Finished embedding chunks for tenant {tenant.id} '
f'on document version {document_version.id}')
except LangChainException as e:
current_app.logger.error(f'Error creating embeddings for tenant {tenant.id} '
f'on document version {document_version.id} while calling OpenAI API'
f'error: {e}')
raise
# Add embeddings to the database
new_embeddings = []
for chunk, embedding in zip(chunks, embeddings):
new_embedding = model_variables['embedding_db_model']()
new_embedding.document_version = document_version
new_embedding.active = True
new_embedding.chunk = chunk
new_embedding.embedding = embedding
new_embeddings.append(new_embedding)
current_app.logger.debug(f'Finished embedding chunks for tenant {tenant.id} ')
return new_embeddings
def log_parsing_info(tenant, tags, included_elements, excluded_elements, excluded_classes, elements_to_parse):
if tenant.embed_tuning:
current_app.embed_tuning_logger.debug(f'Tags to parse: {tags}')
current_app.embed_tuning_logger.debug(f'Included Elements: {included_elements}')
current_app.embed_tuning_logger.debug(f'Excluded Elements: {excluded_elements}')
current_app.embed_tuning_logger.debug(f'Excluded Classes: {excluded_classes}')
current_app.embed_tuning_logger.debug(f'Found {len(elements_to_parse)} elements to parse')
current_app.embed_tuning_logger.debug(f'First element to parse: {elements_to_parse[0]}')
def create_potential_chunks_for_markdown(tenant_id, document_version, input_file):
try:
current_app.logger.info(f'Creating potential chunks for tenant {tenant_id}')
# Download the markdown file from MinIO
markdown_data = minio_client.download_document_file(tenant_id,
document_version.doc_id,
document_version.language,
document_version.id,
input_file
)
markdown = markdown_data.decode('utf-8')
headers_to_split_on = [
("#", "Header 1"),
("##", "Header 2"),
]
markdown_splitter = MarkdownHeaderTextSplitter(headers_to_split_on, strip_headers=False)
md_header_splits = markdown_splitter.split_text(markdown)
potential_chunks = [doc.page_content for doc in md_header_splits]
current_app.logger.debug(f'Created {len(potential_chunks)} potential chunks for tenant {tenant_id}')
return potential_chunks
except Exception as e:
current_app.logger.error(f'Error creating potential chunks for tenant {tenant_id}, with error: {e}')
raise
def combine_chunks_for_markdown(potential_chunks, min_chars, max_chars):
actual_chunks = []
current_chunk = ""
current_length = 0
for chunk in potential_chunks:
chunk_length = len(chunk)
if current_length + chunk_length > max_chars:
if current_length >= min_chars:
actual_chunks.append(current_chunk)
current_chunk = chunk
current_length = chunk_length
else:
# If the combined chunk is still less than max_chars, keep adding
current_chunk += f'\n{chunk}'
current_length += chunk_length
else:
current_chunk += f'\n{chunk}'
current_length += chunk_length
# Handle the last chunk
if current_chunk and current_length >= 0:
actual_chunks.append(current_chunk)
return actual_chunks