Files
eveAI/config/config.py

258 lines
10 KiB
Python

from os import environ, path
from datetime import timedelta
import redis
basedir = path.abspath(path.dirname(__file__))
class Config(object):
DEBUG = False
DEVELOPMENT = False
SECRET_KEY = '97867c1491bea5ee6a8e8436eb11bf2ba6a69ff53ab1b17ecba450d0f2e572e1'
SESSION_COOKIE_SECURE = False
SESSION_COOKIE_HTTPONLY = True
WTF_CSRF_ENABLED = True
# flask-security-too settings
# SECURITY_URL_PREFIX = '/admin'
SECURITY_LOGIN_URL = '/admin/login'
SECURITY_LOGOUT_URL = '/admin/logout'
# SECURITY_REGISTER_URL = '/admin/register'
# SECURITY_RESET_URL = '/admin/reset'
# SECURITY_CHANGE_URL = '/admin/change'
# SECURITY_POST_LOGIN_VIEW = '/admin/user/tenant_overview'
# SECURITY_POST_LOGOUT_VIEW = '/admin'
# SECURITY_POST_REGISTER_VIEW = '/admin/user/tenant_overview'
# SECURITY_POST_RESET_VIEW = '/admin/login'
# SECURITY_POST_CHANGE_VIEW = '/admin/login'
# SECURITY_BLUEPRINT_NAME = 'security_bp'
SECURITY_PASSWORD_SALT = '228614859439123264035565568761433607235'
REMEMBER_COOKIE_SAMESITE = 'strict'
SESSION_COOKIE_SAMESITE = 'strict'
SECURITY_CONFIRMABLE = True
SECURITY_TRACKABLE = True
SECURITY_PASSWORD_COMPLEXITY_CHECKER = 'zxcvbn'
SECURITY_POST_LOGIN_VIEW = '/user/tenant_overview'
SECURITY_RECOVERABLE = True
SECURITY_EMAIL_SENDER = "eveai_super@flow-it.net"
# Ensure Flask-Security-Too is handling CSRF tokens when behind a proxy
SECURITY_CSRF_PROTECT_MECHANISMS = ['session']
SECURITY_CSRF_COOKIE_NAME = 'XSRF-TOKEN'
SECURITY_CSRF_HEADER = 'X-XSRF-TOKEN'
WTF_CSRF_CHECK_DEFAULT = False
# flask-mailman settings
MAIL_SERVER = 'mail.flow-it.net'
MAIL_PORT = 587
MAIL_USE_TLS = True
MAIL_USE_SSL = False
MAIL_DEFAULT_SENDER = ('eveAI Admin', 'eveai_admin@flow-it.net')
# file upload settings
MAX_CONTENT_LENGTH = 16 * 1024 * 1024
UPLOAD_EXTENSIONS = ['.txt', '.pdf', '.png', '.jpg', '.jpeg', '.gif']
# supported languages
SUPPORTED_LANGUAGES = ['en', 'fr', 'nl', 'de', 'es']
# supported LLMs
SUPPORTED_EMBEDDINGS = ['openai.text-embedding-3-small', 'openai.text-embedding-3-large', 'mistral.mistral-embed']
SUPPORTED_LLMS = ['openai.gpt-4o', 'openai.gpt-4-turbo']
# Celery settings
CELERY_TASK_SERIALIZER = 'json'
CELERY_RESULT_SERIALIZER = 'json'
CELERY_ACCEPT_CONTENT = ['json']
CELERY_TIMEZONE = 'UTC'
CELERY_ENABLE_UTC = True
# Chunk Definition, Embedding dependent
# OAI_TE3S_MIN_CHUNK_SIZE = 2000
# OAI_TE3S_MAX_CHUNK_SIZE = 3000
# OAI_TE3L_MIN_CHUNK_SIZE = 3000
# OAI_TE3L_MAX_CHUNK_SIZE = 4000
# LLM TEMPLATES
GPT4_HTML_PARSE_TEMPLATE = """You are a top administrative assistant specialized in transforming given HTML into markdown formatted files. The generated files will be used to generate embeddings in a RAG-system.
# Best practices are:
- Respect wordings and language(s) used in the HTML.
- The following items need to be considered: headings, paragraphs, listed items (numbered or not) and tables. Images can be neglected.
- Sub-headers can be used as lists. This is true when a header is followed by a series of sub-headers without content (paragraphs or listed items). Present those sub-headers as a list.
- Be careful of encoding of the text. Everything needs to be human readable.
Process the file carefully, and take a stepped approach. The resulting markdown should be the result of the processing of the complete input html file. Answer with the pure markdown, without any other text.
HTML is between triple backquotes.
```{html}```"""
GPT4_PDF_PARSE_TEMPLATE = """You are a top administrative aid specialized in transforming given PDF-files into markdown formatted files. The generated files will be used to generate embeddings in a RAG-system.
# Best practices are:
- Respect wordings and language(s) used in the PDF.
- The following items need to be considered: headings, paragraphs, listed items (numbered or not) and tables. Images can be neglected.
- When headings are numbered, show the numbering and define the header level.
- A new item is started when a <return> is found before a full line is reached. In order to know the number of characters in a line, please check the document and the context within the document (e.g. an image could limit the number of characters temporarily).
- Paragraphs are to be stripped of newlines so they become easily readable.
- Be careful of encoding of the text. Everything needs to be human readable.
Process the file carefully, and take a stepped approach. The resulting markdown should be the result of the processing of the complete input pdf content. Answer with the pure markdown, without any other text.
PDF content is between triple backquotes.
```{pdf_content}```
"""
GPT4_SUMMARY_TEMPLATE = """Write a concise summary of the text in {language}. The text is delimited between triple backquotes.
```{text}```"""
GPT4_RAG_TEMPLATE = """Answer the question based on the following context, delimited between triple backquotes.
{tenant_context}
Use the following {language} in your communication, and cite the sources used.
If the question cannot be answered using the given context, say "I have insufficient information to answer this question."
Context:
```{context}```
Question:
{question}"""
GPT4_HISTORY_TEMPLATE = """You are a helpful assistant that details a question based on a previous context,
in such a way that the question is understandable without the previous context.
{tenant_context}
The context is a conversation history, with the HUMAN asking questions, the AI answering questions.
The history is delimited between triple backquotes.
You answer by stating the question in {language}.
History:
```{history}```
Question to be detailed:
{question}"""
GPT4_ENCYCLOPEDIA_TEMPLATE = """You have a lot of background knowledge, and as such you are some kind of
'encyclopedia' to explain general terminology. Only answer if you have a clear understanding of the question.
If not, say you do not have sufficient information to answer the question. Use the {language} in your communication.
Question:
{question}"""
GPT4_TRANSCRIPT_TEMPLATE = """You are a transcription editor that improves a given transcript on several parts
and returns markdown. Without changing what people say. The transcript is delimited between triple backquotes.
Do the following:
- divide the transcript into several logical parts. Ensure questions and their answers are in the same logical part.
- annotate the text to identify these logical parts using headings (max 2 levels) in the same language as the transcript.
- improve errors in the transcript given the context, but leave the text intact.
```{transcript}```
"""
# SocketIO settings
# SOCKETIO_ASYNC_MODE = 'threading'
SOCKETIO_ASYNC_MODE = 'gevent'
# Session Settings
SESSION_TYPE = 'redis'
SESSION_PERMANENT = False
SESSION_USE_SIGNER = True
PERMANENT_SESSION_LIFETIME = timedelta(minutes=60)
SESSION_REFRESH_EACH_REQUEST = True
# Fallback Algorithms
FALLBACK_ALGORITHMS = [
"RAG_TENANT",
"RAG_WIKIPEDIA",
"RAG_GOOGLE",
"LLM"
]
# Interaction algorithms
INTERACTION_ALGORITHMS = {
"RAG_TENANT": {"name": "RAG_TENANT", "description": "Algorithm using only information provided by the tenant"},
"RAG_WIKIPEDIA": {"name": "RAG_WIKIPEDIA", "description": "Algorithm using information provided by Wikipedia"},
"RAG_GOOGLE": {"name": "RAG_GOOGLE", "description": "Algorithm using information provided by Google"},
"LLM": {"name": "LLM", "description": "Algorithm using information integrated in the used LLM"}
}
class DevConfig(Config):
DEVELOPMENT = True
DEBUG = True
FLASK_DEBUG = True
PYCHARM_DEBUG = False
DB_HOST = environ.get('DB_HOST', 'localhost')
DB_USER = environ.get('DB_USER', 'luke')
DB_PASS = environ.get('DB_PASS', 'Skywalker!')
DB_NAME = environ.get('DB_NAME', 'eveai')
SQLALCHEMY_DATABASE_URI = f'postgresql+pg8000://{DB_USER}:{DB_PASS}@{DB_HOST}:5432/{DB_NAME}'
SQLALCHEMY_BINDS = {'public': SQLALCHEMY_DATABASE_URI}
EXPLAIN_TEMPLATE_LOADING = False
# Define the nginx prefix used for the specific apps
EVEAI_APP_LOCATION_PREFIX = '/admin'
EVEAI_CHAT_LOCATION_PREFIX = '/chat'
# flask-mailman settings
MAIL_USERNAME = 'eveai_super@flow-it.net'
MAIL_PASSWORD = '$6xsWGbNtx$CFMQZqc*'
# file upload settings
UPLOAD_FOLDER = '/app/tenant_files'
# Celery settings
# eveai_app Redis Settings
CELERY_BROKER_URL = 'redis://redis:6379/0'
CELERY_RESULT_BACKEND = 'redis://redis:6379/0'
# eveai_chat Redis Settings
CELERY_BROKER_URL_CHAT = 'redis://redis:6379/3'
CELERY_RESULT_BACKEND_CHAT = 'redis://redis:6379/3'
# OpenAI API Keys
OPENAI_API_KEY = 'sk-proj-8R0jWzwjL7PeoPyMhJTZT3BlbkFJLb6HfRB2Hr9cEVFWEhU7'
# Groq API Keys
GROQ_API_KEY = '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'
# Unstructured settings
UNSTRUCTURED_API_KEY = 'pDgCrXumYhM3CNvjvwV8msMldXC3uw'
UNSTRUCTURED_BASE_URL = 'https://flowitbv-16c4us0m.api.unstructuredapp.io'
UNSTRUCTURED_FULL_URL = 'https://flowitbv-16c4us0m.api.unstructuredapp.io/general/v0/general'
# SocketIO settings
SOCKETIO_MESSAGE_QUEUE = 'redis://redis:6379/1'
SOCKETIO_CORS_ALLOWED_ORIGINS = '*'
SOCKETIO_LOGGER = True
SOCKETIO_ENGINEIO_LOGGER = True
SOCKETIO_PING_TIMEOUT = 20000
SOCKETIO_PING_INTERVAL = 25000
SOCKETIO_MAX_IDLE_TIME = timedelta(minutes=60) # Changing this value ==> change maxConnectionDuration value in
# eveai-chat-widget.js
# Google Cloud settings
GC_PROJECT_NAME = 'eveai-420711'
GC_LOCATION = 'europe-west1'
GC_KEY_RING = 'eveai-chat'
GC_CRYPTO_KEY = 'envelope-encryption-key'
# JWT settings
JWT_SECRET_KEY = 'bsdMkmQ8ObfMD52yAFg4trrvjgjMhuIqg2fjDpD/JqvgY0ccCcmlsEnVFmR79WPiLKEA3i8a5zmejwLZKl4v9Q=='
# Session settings
SESSION_REDIS = redis.from_url('redis://redis:6379/2')
# PATH settings
ffmpeg_path = '/usr/bin/ffmpeg'
class ProdConfig(Config):
DEVELOPMENT = False
DEBUG = False
# SQLALCHEMY_DATABASE_URI = environ.get('SQLALCHEMY_DATABASE_URI') or \
# 'sqlite:///' + os.path.join(basedir, 'db.sqlite')
config = {
'dev': DevConfig(),
'prod': ProdConfig(),
'default': DevConfig(),
}