Files
eveAI/eveai_workers/tasks.py

405 lines
17 KiB
Python

from datetime import datetime as dt, timezone as tz
from flask import current_app
from sqlalchemy.exc import SQLAlchemyError
from celery import states
from celery.exceptions import Ignore
import os
# Unstructured commercial client imports
from unstructured_client import UnstructuredClient
from unstructured_client.models import shared
from unstructured_client.models.errors import SDKError
# OpenAI imports
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from langchain.chains.summarize import load_summarize_chain
from langchain.text_splitter import CharacterTextSplitter
from langchain_core.exceptions import LangChainException
from common.utils.database import Database
from common.models.document import DocumentVersion, EmbeddingMistral, EmbeddingSmallOpenAI
from common.models.user import Tenant
from common.extensions import db
from common.utils.celery_utils import current_celery
from bs4 import BeautifulSoup
@current_celery.task(name='create_embeddings', queue='embeddings')
def create_embeddings(tenant_id, document_version_id):
# Setup Remote Debugging only if PYCHARM_DEBUG=True
if current_app.config['PYCHARM_DEBUG']:
import pydevd_pycharm
pydevd_pycharm.settrace('localhost', port=50170, stdoutToServer=True, stderrToServer=True)
current_app.logger.info(f'Creating embeddings for tenant {tenant_id} on document version {document_version_id}.')
# Retrieve Tenant for which we are processing
tenant = Tenant.query.get(tenant_id)
if tenant is None:
current_app.logger.error(f'Cannot create embeddings for tenant {tenant_id}. '
f'Tenant not found')
create_embeddings.update_state(state=states.FAILURE)
raise Ignore()
# Ensure we are working in the correct database schema
Database(tenant_id).switch_schema()
# Retrieve document version to process
document_version = DocumentVersion.query.get(document_version_id)
if document_version is None:
current_app.logger.error(f'Cannot create embeddings for tenant {tenant_id}. '
f'Document version {document_version_id} not found')
create_embeddings.update_state(state=states.FAILURE)
raise Ignore()
db.session.add(document_version)
# start processing
document_version.processing = True
document_version.processing_started_at = dt.now(tz.utc)
try:
db.session.commit()
except SQLAlchemyError as e:
current_app.logger.error(f'Error saving document version {document_version_id} to database '
f'for tenant {tenant_id} when starting creating of embeddings. '
f'error: {e}')
create_embeddings.update_state(state=states.FAILURE)
raise Ignore()
match document_version.file_type:
case 'pdf':
process_pdf(tenant, document_version)
case 'html':
process_html(tenant, document_version)
case _:
current_app.logger.info(f'No functionality defined for file type {document_version.file_type} '
f'for tenant {tenant_id} '
f'while creating embeddings for document version {document_version_id}')
create_embeddings.update_state(state=states.FAILURE)
raise Ignore()
@current_celery.task(name='ask_eve_ai', queue='llm_interactions')
def ask_eve_ai(query):
# Interaction logic with LLMs like GPT (Langchain API calls, etc.)
pass
def process_pdf(tenant, document_version):
file_path = os.path.join(current_app.config['UPLOAD_FOLDER'],
document_version.file_location,
document_version.file_name)
if os.path.exists(file_path):
with open(file_path, 'rb') as f:
files = shared.Files(content=f.read(), file_name=document_version.file_name)
req = shared.PartitionParameters(
files=files,
strategy='hi_res',
hi_res_model_name='yolox',
coordinates=True,
extract_image_block_types=['Image', 'Table'],
chunking_strategy='by_title',
combine_under_n_chars=current_app.config.get('MIN_CHUNK_SIZE'),
max_characters=current_app.config.get('MAX_CHUNK_SIZE'),
)
else:
current_app.logger.error(f'The physical file for document version {document_version.id} '
f'for tenant {tenant.id} '
f'at {file_path} does not exist')
create_embeddings.update_state(state=states.FAILURE)
raise Ignore()
try:
chunks = partition_doc_unstructured(tenant, document_version, req)
except Exception as e:
current_app.logger.error(f'Unable to create Embeddings for tenant {tenant.id} '
f'while processing PDF on document version {document_version.id} '
f'error: {e}')
create_embeddings.update_state(state=states.FAILURE)
raise Ignore()
summary = summarize_chunk(tenant, document_version, chunks[0])
doc_lang = document_version.document_language
doc_lang.system_context = f'Summary: {summary}\n'
enriched_chunks = enrich_chunks(tenant, document_version, chunks)
embeddings = embed_chunks(tenant, document_version, enriched_chunks)
try:
db.session.add(doc_lang)
db.session.add(document_version)
document_version.processing_finished_at = dt.now(tz.utc)
document_version.processing = False
db.session.add_all(embeddings)
db.session.commit()
except SQLAlchemyError as e:
current_app.logger.error(f'Error saving embedding information for tenant {tenant.id} '
f'on PDF, document version {document_version.id}'
f'error: {e}')
db.session.rollback()
raise
current_app.logger.info(f'Embeddings created successfully for tenant {tenant.id} '
f'on document version {document_version.id} :-)')
def process_html(tenant, document_version):
# The tags to be considered can be dependent on the tenant
html_tags = tenant.html_tags
end_tags = tenant.html_end_tags
included_elements = tenant.html_included_elements
excluded_elements = tenant.html_excluded_elements
file_path = os.path.join(current_app.config['UPLOAD_FOLDER'],
document_version.file_location,
document_version.file_name)
if os.path.exists(file_path):
with open(file_path, 'rb') as f:
html_content = f.read()
else:
current_app.logger.error(f'The physical file for document version {document_version.id} '
f'for tenant {tenant.id} '
f'at {file_path} does not exist')
create_embeddings.update_state(state=states.FAILURE)
raise Ignore()
extracted_data, title = parse_html(html_content, html_tags, included_elements=included_elements,
excluded_elements=excluded_elements)
potential_chunks = create_potential_chunks(extracted_data, end_tags)
chunks = combine_chunks(potential_chunks,
current_app.config.get('MIN_CHUNK_SIZE'),
current_app.config.get('MAX_CHUNK_SIZE')
)
summary = summarize_chunk(tenant, document_version, chunks[0])
doc_lang = document_version.document_language
doc_lang.system_context = (f'Title: {title}\n'
f'Summary: {summary}\n')
enriched_chunks = enrich_chunks(tenant, document_version, chunks)
embeddings = embed_chunks(tenant, document_version, enriched_chunks)
try:
db.session.add(doc_lang)
db.session.add(document_version)
document_version.processing_finished_at = dt.now(tz.utc)
document_version.processing = False
db.session.add_all(embeddings)
db.session.commit()
except SQLAlchemyError as e:
current_app.logger.error(f'Error saving embedding information for tenant {tenant.id} '
f'on HTML, document version {document_version.id}'
f'error: {e}')
raise
current_app.logger.info(f'Embeddings created successfully for tenant {tenant.id} '
f'on document version {document_version.id} :-)')
def enrich_chunks(tenant, document_version, chunks):
doc_lang = document_version.document_language
chunk_total_context = (f'Filename: {document_version.file_name}\n'
f'{doc_lang.system_context}\n'
f'User Context:\n{doc_lang.user_context}')
enriched_chunks = []
initial_chunk = f'Filename: {document_version.file_name}\n User Context:\n{doc_lang.user_context}\n{chunks[0]}'
enriched_chunks.append(initial_chunk)
for chunk in chunks[1:]:
enriched_chunk = f'{chunk_total_context}\n{chunk}'
enriched_chunks.append(enriched_chunk)
return enriched_chunks
def summarize_chunk(tenant, document_version, chunk):
llm_model = tenant.llm_model
llm_provider = llm_model.split('.', 1)[0]
llm_model = llm_model.split('.', 1)[1]
summary_template = ''
llm = None
match llm_provider:
case 'openai':
api_key = current_app.config.get('OPENAI_API_KEY')
llm = ChatOpenAI(api_key=api_key, temperature=0, model=llm_model)
match llm_model:
case 'gpt-4-turbo':
summary_template = current_app.config.get('GPT4_SUMMARY_TEMPLATE')
case 'gpt-3.5-turbo':
summary_template = current_app.config.get('GPT3_5_SUMMARY_TEMPLATE')
case _:
current_app.logger.error(f'Error summarizing initial chunk for tenant {tenant.id} '
f'on document version {document_version.id} '
f'error: Invalid llm model')
create_embeddings.update_state(state=states.FAILURE)
raise Ignore()
case _:
current_app.logger.error(f'Error summarizing initial chunk for tenant {tenant.id} '
f'on document version {document_version.id} '
f'error: Invalid llm provider')
prompt = ChatPromptTemplate.from_template(summary_template)
chain = load_summarize_chain(llm, chain_type='stuff', prompt=prompt)
doc_creator = CharacterTextSplitter(chunk_size=current_app.config.get('MAX_CHUNK_SIZE') * 2, chunk_overlap=0)
text_to_summarize = doc_creator.create_documents(chunk)
try:
summary = chain.run(text_to_summarize)
except LangChainException as e:
current_app.logger.error(f'Error creating summary for chunk enrichment for tenant {tenant.id} '
f'on document version {document_version.id} '
f'error: {e}')
raise
return summary
def partition_doc_unstructured(tenant, document_version, unstructured_request):
# Initiate the connection to unstructured.io
url = current_app.config.get('UNSTRUCTURED_FULL_URL')
api_key = current_app.config.get('UNSTRUCTURED_API_KEY')
unstructured_client = UnstructuredClient(server_url=url, api_key_auth=api_key)
try:
res = unstructured_client.general.partition(unstructured_request)
chunks = []
for el in res.elements:
match el['type']:
case 'CompositeElement':
chunks.append(el['text'])
case 'Image':
pass
case 'Table':
chunks.append(el['metadata']['text_as_html'])
return chunks
except SDKError as e:
current_app.logger.error(f'Error creating embeddings for tenant {tenant.id} '
f'on document version {document_version.id} while chuncking'
f'error: {e}')
raise
def embed_chunks(tenant, document_version, chunks):
embedding_provider = tenant.embedding_model.rsplit('.', 1)[0]
embedding_model = tenant.embedding_model.rsplit('.', 1)[1]
match embedding_provider:
case 'openai':
match embedding_model:
case 'text-embedding-3-small':
return embed_chunks_for_text_embedding_3_small(tenant, document_version, chunks)
case _:
current_app.logger.error(f'Error creating embeddings for tenant {tenant.id} '
f'on document version {document_version.id} '
f'error: Invalid embedding model')
create_embeddings.update_state(state=states.FAILURE)
raise Ignore()
case _:
current_app.logger.error(f'Error creating embeddings for tenant {tenant.id} '
f'on document version {document_version.id} '
f'error: Invalid embedding provider')
def embed_chunks_for_text_embedding_3_small(tenant, document_version, chunks):
# Create embedding vectors using OpenAI
api_key = current_app.config.get('OPENAI_API_KEY')
embeddings_model = OpenAIEmbeddings(api_key=api_key, model='text-embedding-3-small')
try:
embeddings = embeddings_model.embed_documents(chunks)
except LangChainException as e:
current_app.logger.error(f'Error creating embeddings for tenant {tenant.id} '
f'on document version {document_version.id} while calling OpenAI API'
f'error: {e}')
raise
# Add embeddings to the database
new_embeddings = []
for chunk, embedding in zip(chunks, embeddings):
new_embedding = EmbeddingSmallOpenAI()
new_embedding.document_version = document_version
new_embedding.active = True
new_embedding.chunk = chunk
new_embedding.embedding = embedding
new_embeddings.append(new_embedding)
return new_embeddings
def embed_chunks_for_mistral_embed(tenant_id, document_version, chunks):
pass
def parse_html(html_content, tags, included_elements=None, excluded_elements=None):
soup = BeautifulSoup(html_content, 'html.parser')
extracted_content = []
if included_elements:
elements_to_parse = soup.find_all(included_elements)
else:
elements_to_parse = [soup] # parse the entire document if no included_elements specified
# Iterate through the found included elements
for element in elements_to_parse:
# Find all specified tags within each included element
for sub_element in element.find_all(tags):
if excluded_elements and sub_element.find_parent(excluded_elements):
continue # Skip this sub_element if it's within any of the excluded_elements
extracted_content.append((sub_element.name, sub_element.get_text(strip=True)))
title = soup.find('title').get_text(strip=True)
return extracted_content, title
def create_potential_chunks(extracted_data, end_tags):
potential_chunks = []
current_chunk = []
for tag, text in extracted_data:
formatted_text = f"- {text}" if tag == 'li' else f"{text}\n"
if current_chunk and tag in end_tags and current_chunk[-1][0] in end_tags:
# Consecutive li and p elements stay together
current_chunk.append((tag, formatted_text))
else:
# End the current chunk if the last element was an end tag
if current_chunk and current_chunk[-1][0] in end_tags:
potential_chunks.append(current_chunk)
current_chunk = []
current_chunk.append((tag, formatted_text))
# Add the last chunk
if current_chunk:
potential_chunks.append(current_chunk)
return potential_chunks
def combine_chunks(potential_chunks, min_chars, max_chars):
actual_chunks = []
current_chunk = ""
current_length = 0
for chunk in potential_chunks:
chunk_content = ''.join(text for _, text in chunk)
chunk_length = len(chunk_content)
if current_length + chunk_length > max_chars:
if current_length >= min_chars:
actual_chunks.append(current_chunk)
current_chunk = chunk_content
current_length = chunk_length
else:
# If the combined chunk is still less than max_chars, keep adding
current_chunk += chunk_content
current_length += chunk_length
else:
current_chunk += chunk_content
current_length += chunk_length
# Handle the last chunk
if current_chunk and current_length >= min_chars:
actual_chunks.append(current_chunk)
return actual_chunks