Prepare for html document validation (added wanted tags to tenant)
This commit is contained in:
@@ -29,6 +29,9 @@ class Tenant(db.Model):
|
||||
default_llm_model = db.Column(db.String(50), nullable=True)
|
||||
allowed_llm_models = db.Column(ARRAY(sa.String(50)), nullable=True)
|
||||
|
||||
# Embedding variables
|
||||
html_tags = db.Column(ARRAY(sa.String(10)), nullable=True, default=['p', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'li'])
|
||||
|
||||
# Licensing Information
|
||||
license_start_date = db.Column(db.Date, nullable=True)
|
||||
license_end_date = db.Column(db.Date, nullable=True)
|
||||
|
||||
@@ -4,6 +4,7 @@ from sqlalchemy import text
|
||||
from sqlalchemy.schema import CreateSchema
|
||||
from sqlalchemy.exc import InternalError
|
||||
from sqlalchemy.orm import sessionmaker, scoped_session
|
||||
from sqlalchemy.exc import SQLAlchemyError
|
||||
from flask import current_app
|
||||
|
||||
from common.extensions import db, migrate
|
||||
@@ -35,9 +36,10 @@ class Database:
|
||||
"""create new database schema, mostly used on tenant creation"""
|
||||
try:
|
||||
db.session.execute(CreateSchema(self.schema))
|
||||
db.session.execute(text(f"CREATE EXTENSION IF NOT EXISTS pgvector SCHEMA {self.schema}"))
|
||||
# db.session.commit()
|
||||
db.session.execute(text(f"SET search_path TO {self.schema}, public"))
|
||||
db.session.commit()
|
||||
except InternalError as e:
|
||||
except SQLAlchemyError as e:
|
||||
db.session.rollback()
|
||||
db.session.close()
|
||||
current_app.logger.error(f"Error creating schema {self.schema}: {e.args}")
|
||||
@@ -48,7 +50,7 @@ class Database:
|
||||
|
||||
def switch_schema(self):
|
||||
"""switch between tenant/public database schema"""
|
||||
db.session.execute(text(f'set search_path to "{self.schema}"'))
|
||||
db.session.execute(text(f'set search_path to "{self.schema}", public'))
|
||||
db.session.commit()
|
||||
|
||||
def migrate_tenant_schema(self):
|
||||
|
||||
@@ -40,7 +40,7 @@ def add_document():
|
||||
|
||||
create_document_stack(form, file, filename, extension)
|
||||
|
||||
return redirect(url_for('document_bp/documents'))
|
||||
return redirect(url_for('document_bp.documents'))
|
||||
|
||||
return render_template('document/add_document.html', form=form)
|
||||
|
||||
|
||||
@@ -21,6 +21,10 @@ class TenantForm(FlaskForm):
|
||||
license_start_date = DateField('License Start Date', id='form-control datepicker', validators=[Optional()])
|
||||
license_end_date = DateField('License End Date', id='form-control datepicker', validators=[Optional()])
|
||||
allowed_monthly_interactions = IntegerField('Allowed Monthly Interactions', validators=[NumberRange(min=0)])
|
||||
# Embedding variables
|
||||
html_tags = StringField('HTML Tags', validators=[DataRequired(), Length(max=255)],
|
||||
default='p, h1, h2, h3, h4, h5, h6, li')
|
||||
|
||||
submit = SubmitField('Submit')
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
|
||||
@@ -1,5 +1,7 @@
|
||||
from datetime import datetime as dt, timezone as tz
|
||||
from flask import current_app
|
||||
from sqlalchemy.exc import SQLAlchemyError
|
||||
|
||||
import os
|
||||
|
||||
# Unstructured commercial client imports
|
||||
@@ -19,6 +21,8 @@ from common.models.document import DocumentVersion, EmbeddingMistral, EmbeddingS
|
||||
from common.extensions import db
|
||||
from common.utils.celery_utils import current_celery
|
||||
|
||||
from bs4 import BeautifulSoup
|
||||
|
||||
|
||||
@current_celery.task(name='create_embeddings', queue='embeddings')
|
||||
def create_embeddings(tenant_id, document_version_id, default_embedding_model):
|
||||
@@ -44,11 +48,18 @@ def create_embeddings(tenant_id, document_version_id, default_embedding_model):
|
||||
# start processing
|
||||
document_version.processing = True
|
||||
document_version.processing_started_at = dt.now(tz.utc)
|
||||
db.session.commit()
|
||||
try:
|
||||
db.session.commit()
|
||||
except SQLAlchemyError as e:
|
||||
current_app.logger.error(f'Error saving document version {document_version_id} to database '
|
||||
f'for tenant {tenant_id} when creating embeddings. '
|
||||
f'error: {e}')
|
||||
return
|
||||
|
||||
embed_provider = default_embedding_model.rsplit('.', 1)[0]
|
||||
embed_model = default_embedding_model.rsplit('.', 1)[1]
|
||||
# define embedding variables
|
||||
embedding_function = None
|
||||
match (embed_provider, embed_model):
|
||||
case ('openai', 'text-embedding-3-small'):
|
||||
embedding_function = embed_chunks_for_text_embedding_3_small
|
||||
@@ -57,37 +68,13 @@ def create_embeddings(tenant_id, document_version_id, default_embedding_model):
|
||||
|
||||
match document_version.file_type:
|
||||
case 'pdf':
|
||||
file_path = os.path.join(current_app.config['UPLOAD_FOLDER'],
|
||||
document_version.file_location,
|
||||
document_version.file_name)
|
||||
if os.path.exists(file_path):
|
||||
with open(file_path, 'rb') as f:
|
||||
files = shared.Files(content=f.read(), file_name=document_version.file_name)
|
||||
req = shared.PartitionParameters(
|
||||
files=files,
|
||||
strategy='hi_res',
|
||||
hi_res_model_name='yolox',
|
||||
coordinates=True,
|
||||
extract_image_block_types=['Image', 'Table'],
|
||||
chunking_strategy='by_title',
|
||||
combine_under_n_chars=2000,
|
||||
max_characters=3000,
|
||||
)
|
||||
try:
|
||||
chunks = partition_doc_unstructured(tenant_id, document_version, req)
|
||||
enriched_chunk_docs = enrich_chunks(tenant_id, document_version, chunks)
|
||||
embedding_function(tenant_id, document_version, enriched_chunk_docs)
|
||||
except Exception as e:
|
||||
current_app.logger.error(f'Unable to create Embeddings for tenant {tenant_id} '
|
||||
f'on document version {document_version.id} '
|
||||
f'with model {default_embedding_model} '
|
||||
f'error: {e}')
|
||||
return
|
||||
|
||||
else: # file exists
|
||||
current_app.logger.error(f'The physical file for document version {document_version_id} '
|
||||
f'at {file_path} does not exist')
|
||||
return
|
||||
process_pdf(tenant_id, document_version, embedding_function, default_embedding_model)
|
||||
case 'html':
|
||||
process_html(tenant_id, document_version, embedding_function, default_embedding_model)
|
||||
case _:
|
||||
current_app.logger.info(f'No functionality defined for file type {document_version.file_type} '
|
||||
f'for tenant {tenant_id} '
|
||||
f'while creating embeddings for document version {document_version_id}')
|
||||
|
||||
|
||||
@current_celery.task(name='ask_eve_ai', queue='llm_interactions')
|
||||
@@ -96,6 +83,67 @@ def ask_eve_ai(query):
|
||||
pass
|
||||
|
||||
|
||||
def process_pdf(tenant_id, document_version, embedding_function, embedding_model):
|
||||
file_path = os.path.join(current_app.config['UPLOAD_FOLDER'],
|
||||
document_version.file_location,
|
||||
document_version.file_name)
|
||||
if os.path.exists(file_path):
|
||||
with open(file_path, 'rb') as f:
|
||||
files = shared.Files(content=f.read(), file_name=document_version.file_name)
|
||||
req = shared.PartitionParameters(
|
||||
files=files,
|
||||
strategy='hi_res',
|
||||
hi_res_model_name='yolox',
|
||||
coordinates=True,
|
||||
extract_image_block_types=['Image', 'Table'],
|
||||
chunking_strategy='by_title',
|
||||
combine_under_n_chars=2000,
|
||||
max_characters=3000,
|
||||
)
|
||||
try:
|
||||
chunks = partition_doc_unstructured(tenant_id, document_version, req)
|
||||
enriched_chunk_docs = enrich_chunks(tenant_id, document_version, chunks)
|
||||
embeddings = embedding_function(tenant_id, document_version, enriched_chunk_docs)
|
||||
except Exception as e:
|
||||
current_app.logger.error(f'Unable to create Embeddings for tenant {tenant_id} '
|
||||
f'on document version {document_version.id} '
|
||||
f'with model {embedding_model} '
|
||||
f'error: {e}')
|
||||
raise
|
||||
|
||||
# Save embeddings & processing information to the database
|
||||
db.session.add_all(embeddings)
|
||||
db.session.add(document_version)
|
||||
document_version.processing_finished_at = dt.now(tz.utc)
|
||||
document_version.processing = False
|
||||
|
||||
try:
|
||||
db.session.commit()
|
||||
except SQLAlchemyError as e:
|
||||
current_app.logger.error(f'Error saving embedding information for tenant {tenant_id} '
|
||||
f'on document version {document_version.id}'
|
||||
f'error: {e}')
|
||||
db.session.rollback()
|
||||
raise
|
||||
|
||||
current_app.logger.info(f'Embeddings created successfully for tenant {tenant_id} '
|
||||
f'on document version {document_version.id} :-)')
|
||||
else: # file exists
|
||||
current_app.logger.error(f'The physical file for document version {document_version.id} '
|
||||
f'at {file_path} does not exist')
|
||||
raise
|
||||
|
||||
|
||||
def process_html(tenant_id, document_version, embedding_function, default_embedding_model):
|
||||
file_path = os.path.join(current_app.config['UPLOAD_FOLDER'],
|
||||
document_version.file_location,
|
||||
document_version.file_name)
|
||||
if os.path.exists(file_path):
|
||||
with open(file_path, 'rb') as f:
|
||||
html_content = f.read()
|
||||
|
||||
|
||||
|
||||
def enrich_chunks(tenant_id, document_version, chunks):
|
||||
# We're adding filename and a summary of the first chunk to all the chunks to create global context
|
||||
# using openAI to summarise
|
||||
@@ -109,15 +157,31 @@ def enrich_chunks(tenant_id, document_version, chunks):
|
||||
chain = load_summarize_chain(llm, chain_type='stuff', prompt=prompt)
|
||||
|
||||
doc_creator = CharacterTextSplitter(chunk_size=9000, chunk_overlap=0)
|
||||
text_to_summarize = doc_creator.create_documents(chunks[0]['text'])
|
||||
text_to_summarize = doc_creator.create_documents(chunks[0])
|
||||
try:
|
||||
summary = chain.run(text_to_summarize)
|
||||
chunk_global_context = f'Filename: {document_version.file_name}\nSummary:\n {summary}'
|
||||
doc_lang = document_version.document_language
|
||||
db.session.add(doc_lang)
|
||||
doc_lang.system_context = f'Summary:\n {summary}'
|
||||
try:
|
||||
db.session.commit()
|
||||
except SQLAlchemyError as e:
|
||||
current_app.logger. error(f'Error saving summary to DocumentLanguage {doc_lang.id} '
|
||||
f'while enriching chunks for tenant {tenant_id} '
|
||||
f'on document version {document_version.id} '
|
||||
f'error: {e}')
|
||||
db.session.rollback()
|
||||
raise
|
||||
|
||||
chunk_global_context = (f'Filename: {doc_lang.document.name}\n'
|
||||
f'User Context:\n{doc_lang.user_context}'
|
||||
f'System Context:\n{summary}')
|
||||
enriched_chunks = []
|
||||
initial_chunk = f'Filename: {document_version.file_name}\n User Context:\n{doc_lang.user_context}\n{chunks[0]}'
|
||||
enriched_chunks.append(initial_chunk)
|
||||
for chunk in chunks[1:]:
|
||||
enriched_chunk_raw = f'{chunk_global_context}\n{chunk}'
|
||||
enriched_chunk_doc = doc_creator.create_documents([enriched_chunk_raw])
|
||||
enriched_chunks.append(enriched_chunk_doc)
|
||||
enriched_chunk = f'{chunk_global_context}\n{chunk}'
|
||||
enriched_chunks.append(enriched_chunk)
|
||||
|
||||
return enriched_chunks
|
||||
|
||||
@@ -139,7 +203,7 @@ def partition_doc_unstructured(tenant_id, document_version, unstructured_request
|
||||
chunks = []
|
||||
for el in res.elements:
|
||||
match el['type']:
|
||||
case 'Composite_element':
|
||||
case 'CompositeElement':
|
||||
chunks.append(el['text'])
|
||||
case 'Image':
|
||||
pass
|
||||
@@ -165,11 +229,38 @@ def embed_chunks_for_text_embedding_3_small(tenant_id, document_version, chunks)
|
||||
f'error: {e}')
|
||||
raise
|
||||
|
||||
# Add embeddings to the database
|
||||
new_embeddings = []
|
||||
for chunk, embedding in zip(chunks, embeddings):
|
||||
new_embedding = EmbeddingSmallOpenAI()
|
||||
# TODO: continue here
|
||||
return embeddings
|
||||
new_embedding.document_version = document_version
|
||||
new_embedding.active = True
|
||||
new_embedding.chunk = chunk
|
||||
new_embedding.embedding = embedding
|
||||
new_embeddings.append(new_embedding)
|
||||
|
||||
return new_embeddings
|
||||
|
||||
|
||||
def embed_chunks_for_mistral_embed(tenant_id, document_version, chunks):
|
||||
pass
|
||||
|
||||
|
||||
def parse_html(html_content, included_elements=None, excluded_elements=None):
|
||||
soup = BeautifulSoup(html_content, 'html.parser')
|
||||
extracted_content = []
|
||||
|
||||
if included_elements:
|
||||
elements_to_parse = soup.find_all(included_elements)
|
||||
else:
|
||||
elements_to_parse = [soup] # parse the entire document if no included_elements specified
|
||||
|
||||
# Iterate through the found included elements
|
||||
for element in elements_to_parse:
|
||||
# Find all specified tags within each included element
|
||||
for sub_element in element.find_all(tags):
|
||||
if excluded_elements and sub_element.find_parent(excluded_elements):
|
||||
continue # Skip this sub_element if it's within any of the excluded_elements
|
||||
extracted_content.append((sub_element.name, sub_element.get_text(strip=True)))
|
||||
|
||||
return extracted_content
|
||||
|
||||
@@ -8,4 +8,5 @@ gevent~=24.2.1
|
||||
celery~=5.4.0
|
||||
kombu~=5.3.7
|
||||
langchain~=0.1.17
|
||||
requests~=2.31.0
|
||||
requests~=2.31.0
|
||||
beautifulsoup4~=4.12.3
|
||||
Reference in New Issue
Block a user