- Significantly changed the PDF Processor to use Mistral's OCR model
- ensure very long chunks get split into smaller chunks - ensure TrackedMistralAIEmbedding is batched if needed to ensure correct execution - upgraded some of the packages to a higher version
This commit is contained in:
@@ -9,32 +9,133 @@ from mistralai import Mistral
|
||||
|
||||
|
||||
class TrackedMistralAIEmbeddings(EveAIEmbeddings):
|
||||
def __init__(self, model: str = "mistral_embed"):
|
||||
def __init__(self, model: str = "mistral_embed", batch_size: int = 10):
|
||||
"""
|
||||
Initialize the TrackedMistralAIEmbeddings class.
|
||||
|
||||
Args:
|
||||
model: The embedding model to use
|
||||
batch_size: Maximum number of texts to send in a single API call
|
||||
"""
|
||||
api_key = current_app.config['MISTRAL_API_KEY']
|
||||
self.client = Mistral(
|
||||
api_key=api_key
|
||||
)
|
||||
self.model = model
|
||||
self.batch_size = batch_size
|
||||
super().__init__()
|
||||
|
||||
def embed_documents(self, texts: list[str]) -> list[list[float]]:
|
||||
start_time = time.time()
|
||||
result = self.client.embeddings.create(
|
||||
model=self.model,
|
||||
inputs=texts
|
||||
)
|
||||
end_time = time.time()
|
||||
"""
|
||||
Embed a list of texts, processing in batches to avoid API limitations.
|
||||
|
||||
metrics = {
|
||||
'total_tokens': result.usage.total_tokens,
|
||||
'prompt_tokens': result.usage.prompt_tokens, # For embeddings, all tokens are prompt tokens
|
||||
'completion_tokens': result.usage.completion_tokens,
|
||||
'time_elapsed': end_time - start_time,
|
||||
'interaction_type': 'Embedding',
|
||||
}
|
||||
current_event.log_llm_metrics(metrics)
|
||||
Args:
|
||||
texts: A list of texts to embed
|
||||
|
||||
embeddings = [embedding.embedding for embedding in result.data]
|
||||
Returns:
|
||||
A list of embeddings, one for each input text
|
||||
"""
|
||||
if not texts:
|
||||
return []
|
||||
|
||||
return embeddings
|
||||
all_embeddings = []
|
||||
|
||||
# Process texts in batches
|
||||
for i in range(0, len(texts), self.batch_size):
|
||||
batch = texts[i:i + self.batch_size]
|
||||
batch_num = i // self.batch_size + 1
|
||||
current_app.logger.debug(f"Processing embedding batch {batch_num}, size: {len(batch)}")
|
||||
|
||||
start_time = time.time()
|
||||
try:
|
||||
result = self.client.embeddings.create(
|
||||
model=self.model,
|
||||
inputs=batch
|
||||
)
|
||||
end_time = time.time()
|
||||
batch_time = end_time - start_time
|
||||
|
||||
batch_embeddings = [embedding.embedding for embedding in result.data]
|
||||
all_embeddings.extend(batch_embeddings)
|
||||
|
||||
# Log metrics for this batch
|
||||
metrics = {
|
||||
'total_tokens': result.usage.total_tokens,
|
||||
'prompt_tokens': result.usage.prompt_tokens,
|
||||
'completion_tokens': result.usage.completion_tokens,
|
||||
'time_elapsed': batch_time,
|
||||
'interaction_type': 'Embedding',
|
||||
'batch': batch_num,
|
||||
'batch_size': len(batch)
|
||||
}
|
||||
current_event.log_llm_metrics(metrics)
|
||||
|
||||
current_app.logger.debug(f"Batch {batch_num} processed: {len(batch)} texts, "
|
||||
f"{result.usage.total_tokens} tokens, {batch_time:.2f}s")
|
||||
|
||||
# If processing multiple batches, add a small delay to avoid rate limits
|
||||
if len(texts) > self.batch_size and i + self.batch_size < len(texts):
|
||||
time.sleep(0.25) # 250ms pause between batches
|
||||
|
||||
except Exception as e:
|
||||
current_app.logger.error(f"Error in embedding batch {batch_num}: {str(e)}")
|
||||
# If a batch fails, try to process each text individually
|
||||
for j, text in enumerate(batch):
|
||||
try:
|
||||
current_app.logger.debug(f"Attempting individual embedding for item {i + j}")
|
||||
single_start_time = time.time()
|
||||
single_result = self.client.embeddings.create(
|
||||
model=self.model,
|
||||
inputs=[text]
|
||||
)
|
||||
single_end_time = time.time()
|
||||
|
||||
# Add the single embedding
|
||||
single_embedding = single_result.data[0].embedding
|
||||
all_embeddings.append(single_embedding)
|
||||
|
||||
# Log metrics for this individual embedding
|
||||
single_metrics = {
|
||||
'total_tokens': single_result.usage.total_tokens,
|
||||
'prompt_tokens': single_result.usage.prompt_tokens,
|
||||
'completion_tokens': single_result.usage.completion_tokens,
|
||||
'time_elapsed': single_end_time - single_start_time,
|
||||
'interaction_type': 'Embedding',
|
||||
'batch': f"{batch_num}-recovery-{j}",
|
||||
'batch_size': 1
|
||||
}
|
||||
current_event.log_llm_metrics(single_metrics)
|
||||
|
||||
except Exception as inner_e:
|
||||
current_app.logger.error(f"Failed to embed individual text at index {i + j}: {str(inner_e)}")
|
||||
# Add a zero vector as a placeholder for failed embeddings
|
||||
# Use the correct dimensionality for the model (1024 for mistral_embed)
|
||||
embedding_dim = 1024
|
||||
all_embeddings.append([0.0] * embedding_dim)
|
||||
|
||||
total_batches = (len(texts) + self.batch_size - 1) // self.batch_size
|
||||
current_app.logger.info(f"Embedded {len(texts)} texts in {total_batches} batches")
|
||||
|
||||
return all_embeddings
|
||||
|
||||
# def embed_documents(self, texts: list[str]) -> list[list[float]]:
|
||||
# start_time = time.time()
|
||||
# result = self.client.embeddings.create(
|
||||
# model=self.model,
|
||||
# inputs=texts
|
||||
# )
|
||||
# end_time = time.time()
|
||||
#
|
||||
# metrics = {
|
||||
# 'total_tokens': result.usage.total_tokens,
|
||||
# 'prompt_tokens': result.usage.prompt_tokens, # For embeddings, all tokens are prompt tokens
|
||||
# 'completion_tokens': result.usage.completion_tokens,
|
||||
# 'time_elapsed': end_time - start_time,
|
||||
# 'interaction_type': 'Embedding',
|
||||
# }
|
||||
# current_event.log_llm_metrics(metrics)
|
||||
#
|
||||
# embeddings = [embedding.embedding for embedding in result.data]
|
||||
#
|
||||
# return embeddings
|
||||
|
||||
|
||||
53
common/eveai_model/tracked_mistral_ocr_client.py
Normal file
53
common/eveai_model/tracked_mistral_ocr_client.py
Normal file
@@ -0,0 +1,53 @@
|
||||
import re
|
||||
import time
|
||||
|
||||
from flask import current_app
|
||||
from mistralai import Mistral
|
||||
|
||||
from common.utils.business_event_context import current_event
|
||||
|
||||
|
||||
class TrackedMistralOcrClient:
|
||||
def __init__(self):
|
||||
api_key = current_app.config['MISTRAL_API_KEY']
|
||||
self.client = Mistral(
|
||||
api_key=api_key,
|
||||
)
|
||||
self.model = "mistral-ocr-latest"
|
||||
|
||||
def _get_title(self, markdown):
|
||||
# Look for the first level-1 heading
|
||||
match = re.search(r'^# (.+)', markdown, re.MULTILINE)
|
||||
return match.group(1).strip() if match else None
|
||||
|
||||
def process_pdf(self, file_name, file_content):
|
||||
start_time = time.time()
|
||||
uploaded_pdf = self.client.files.upload(
|
||||
file={
|
||||
"file_name": file_name,
|
||||
"content": file_content
|
||||
},
|
||||
purpose="ocr"
|
||||
)
|
||||
signed_url = self.client.files.get_signed_url(file_id=uploaded_pdf.id)
|
||||
ocr_response = self.client.ocr.process(
|
||||
model=self.model,
|
||||
document={
|
||||
"type": "document_url",
|
||||
"document_url": signed_url.url
|
||||
},
|
||||
include_image_base64=False
|
||||
)
|
||||
nr_of_pages = len(ocr_response.pages)
|
||||
all_markdown = " ".join(page.markdown for page in ocr_response.pages)
|
||||
title = self._get_title(all_markdown)
|
||||
end_time = time.time()
|
||||
|
||||
metrics = {
|
||||
'nr_of_pages': nr_of_pages,
|
||||
'time_elapsed': end_time - start_time,
|
||||
'interaction_type': 'OCR',
|
||||
}
|
||||
current_event.log_llm_metrics(metrics)
|
||||
|
||||
return all_markdown, title
|
||||
@@ -25,6 +25,7 @@ class BusinessEventLog(db.Model):
|
||||
llm_metrics_prompt_tokens = db.Column(db.Integer)
|
||||
llm_metrics_completion_tokens = db.Column(db.Integer)
|
||||
llm_metrics_total_time = db.Column(db.Float)
|
||||
llm_metrics_nr_of_pages = db.Column(db.Integer)
|
||||
llm_metrics_call_count = db.Column(db.Integer)
|
||||
llm_interaction_type = db.Column(db.String(20))
|
||||
message = db.Column(db.Text)
|
||||
|
||||
@@ -106,6 +106,7 @@ class BusinessEvent:
|
||||
'total_tokens': 0,
|
||||
'prompt_tokens': 0,
|
||||
'completion_tokens': 0,
|
||||
'nr_of_pages': 0,
|
||||
'total_time': 0,
|
||||
'call_count': 0,
|
||||
'interaction_type': None
|
||||
@@ -121,13 +122,6 @@ class BusinessEvent:
|
||||
if self.specialist_type_version else ""
|
||||
self.span_name_str = ""
|
||||
|
||||
current_app.logger.debug(f"Labels for metrics: "
|
||||
f"tenant_id={self.tenant_id_str}, "
|
||||
f"event_type={self.event_type_str},"
|
||||
f"specialist_id={self.specialist_id_str}, "
|
||||
f"specialist_type={self.specialist_type_str}, " +
|
||||
f"specialist_type_version={self.specialist_type_version_str}")
|
||||
|
||||
# Increment concurrent events gauge when initialized
|
||||
CONCURRENT_TRACES.labels(
|
||||
tenant_id=self.tenant_id_str,
|
||||
@@ -168,24 +162,17 @@ class BusinessEvent:
|
||||
raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{attribute}'")
|
||||
|
||||
def update_llm_metrics(self, metrics: dict):
|
||||
self.llm_metrics['total_tokens'] += metrics['total_tokens']
|
||||
self.llm_metrics['prompt_tokens'] += metrics['prompt_tokens']
|
||||
self.llm_metrics['completion_tokens'] += metrics['completion_tokens']
|
||||
self.llm_metrics['total_time'] += metrics['time_elapsed']
|
||||
self.llm_metrics['total_tokens'] += metrics.get('total_tokens', 0)
|
||||
self.llm_metrics['prompt_tokens'] += metrics.get('prompt_tokens', 0)
|
||||
self.llm_metrics['completion_tokens'] += metrics.get('completion_tokens', 0)
|
||||
self.llm_metrics['nr_of_pages'] += metrics.get('nr_of_pages', 0)
|
||||
self.llm_metrics['total_time'] += metrics.get('time_elapsed', 0)
|
||||
self.llm_metrics['call_count'] += 1
|
||||
self.llm_metrics['interaction_type'] = metrics['interaction_type']
|
||||
|
||||
# Track in Prometheus metrics
|
||||
interaction_type_str = sanitize_label(metrics['interaction_type']) if metrics['interaction_type'] else ""
|
||||
|
||||
current_app.logger.debug(f"Labels for metrics: "
|
||||
f"tenant_id={self.tenant_id_str}, "
|
||||
f"event_type={self.event_type_str},"
|
||||
f"interaction_type={interaction_type_str}, "
|
||||
f"specialist_id={self.specialist_id_str}, "
|
||||
f"specialist_type={self.specialist_type_str}, "
|
||||
f"specialist_type_version={self.specialist_type_version_str}")
|
||||
|
||||
# Track token usage
|
||||
LLM_TOKENS_COUNTER.labels(
|
||||
tenant_id=self.tenant_id_str,
|
||||
@@ -195,7 +182,7 @@ class BusinessEvent:
|
||||
specialist_id=self.specialist_id_str,
|
||||
specialist_type=self.specialist_type_str,
|
||||
specialist_type_version=self.specialist_type_version_str
|
||||
).inc(metrics['total_tokens'])
|
||||
).inc(metrics.get('total_tokens', 0))
|
||||
|
||||
LLM_TOKENS_COUNTER.labels(
|
||||
tenant_id=self.tenant_id_str,
|
||||
@@ -205,7 +192,7 @@ class BusinessEvent:
|
||||
specialist_id=self.specialist_id_str,
|
||||
specialist_type=self.specialist_type_str,
|
||||
specialist_type_version=self.specialist_type_version_str
|
||||
).inc(metrics['prompt_tokens'])
|
||||
).inc(metrics.get('prompt_tokens', 0))
|
||||
|
||||
LLM_TOKENS_COUNTER.labels(
|
||||
tenant_id=self.tenant_id_str,
|
||||
@@ -215,7 +202,7 @@ class BusinessEvent:
|
||||
specialist_id=self.specialist_id_str,
|
||||
specialist_type=self.specialist_type_str,
|
||||
specialist_type_version=self.specialist_type_version_str
|
||||
).inc(metrics['completion_tokens'])
|
||||
).inc(metrics.get('completion_tokens', 0))
|
||||
|
||||
# Track duration
|
||||
LLM_DURATION.labels(
|
||||
@@ -225,7 +212,7 @@ class BusinessEvent:
|
||||
specialist_id=self.specialist_id_str,
|
||||
specialist_type=self.specialist_type_str,
|
||||
specialist_type_version=self.specialist_type_version_str
|
||||
).observe(metrics['time_elapsed'])
|
||||
).observe(metrics.get('time_elapsed', 0))
|
||||
|
||||
# Track call count
|
||||
LLM_CALLS_COUNTER.labels(
|
||||
@@ -243,6 +230,7 @@ class BusinessEvent:
|
||||
self.llm_metrics['total_tokens'] = 0
|
||||
self.llm_metrics['prompt_tokens'] = 0
|
||||
self.llm_metrics['completion_tokens'] = 0
|
||||
self.llm_metrics['nr_of_pages'] = 0
|
||||
self.llm_metrics['total_time'] = 0
|
||||
self.llm_metrics['call_count'] = 0
|
||||
self.llm_metrics['interaction_type'] = None
|
||||
@@ -270,14 +258,6 @@ class BusinessEvent:
|
||||
# Track start time for the span
|
||||
span_start_time = time.time()
|
||||
|
||||
current_app.logger.debug(f"Labels for metrics: "
|
||||
f"tenant_id={self.tenant_id_str}, "
|
||||
f"event_type={self.event_type_str}, "
|
||||
f"activity_name={self.span_name_str}, "
|
||||
f"specialist_id={self.specialist_id_str}, "
|
||||
f"specialist_type={self.specialist_type_str}, "
|
||||
f"specialist_type_version={self.specialist_type_version_str}")
|
||||
|
||||
# Increment span metrics - using span_name as activity_name for metrics
|
||||
SPAN_COUNTER.labels(
|
||||
tenant_id=self.tenant_id_str,
|
||||
@@ -363,14 +343,6 @@ class BusinessEvent:
|
||||
# Track start time for the span
|
||||
span_start_time = time.time()
|
||||
|
||||
current_app.logger.debug(f"Labels for metrics: "
|
||||
f"tenant_id={self.tenant_id_str}, "
|
||||
f"event_type={self.event_type_str}, "
|
||||
f"activity_name={self.span_name_str}, "
|
||||
f"specialist_id={self.specialist_id_str}, "
|
||||
f"specialist_type={self.specialist_type_str}, "
|
||||
f"specialist_type_version={self.specialist_type_version_str}")
|
||||
|
||||
# Increment span metrics - using span_name as activity_name for metrics
|
||||
SPAN_COUNTER.labels(
|
||||
tenant_id=self.tenant_id_str,
|
||||
@@ -487,10 +459,11 @@ class BusinessEvent:
|
||||
'specialist_type': self.specialist_type,
|
||||
'specialist_type_version': self.specialist_type_version,
|
||||
'environment': self.environment,
|
||||
'llm_metrics_total_tokens': metrics['total_tokens'],
|
||||
'llm_metrics_prompt_tokens': metrics['prompt_tokens'],
|
||||
'llm_metrics_completion_tokens': metrics['completion_tokens'],
|
||||
'llm_metrics_total_time': metrics['time_elapsed'],
|
||||
'llm_metrics_total_tokens': metrics.get('total_tokens', 0),
|
||||
'llm_metrics_prompt_tokens': metrics.get('prompt_tokens', 0),
|
||||
'llm_metrics_completion_tokens': metrics.get('completion_tokens', 0),
|
||||
'llm_metrics_nr_of_pages': metrics.get('nr_of_pages', 0),
|
||||
'llm_metrics_total_time': metrics.get('time_elapsed', 0),
|
||||
'llm_interaction_type': metrics['interaction_type'],
|
||||
'message': message,
|
||||
}
|
||||
@@ -518,6 +491,7 @@ class BusinessEvent:
|
||||
'llm_metrics_total_tokens': self.llm_metrics['total_tokens'],
|
||||
'llm_metrics_prompt_tokens': self.llm_metrics['prompt_tokens'],
|
||||
'llm_metrics_completion_tokens': self.llm_metrics['completion_tokens'],
|
||||
'llm_metrics_nr_of_pages': self.llm_metrics['nr_of_pages'],
|
||||
'llm_metrics_total_time': self.llm_metrics['total_time'],
|
||||
'llm_metrics_call_count': self.llm_metrics['call_count'],
|
||||
'llm_interaction_type': self.llm_metrics['interaction_type'],
|
||||
|
||||
@@ -135,6 +135,11 @@ def get_crewai_llm(full_model_name='mistral.mistral-large-latest', temperature=0
|
||||
return llm
|
||||
|
||||
|
||||
def process_pdf():
|
||||
full_model_name = 'mistral-ocr-latest'
|
||||
|
||||
|
||||
|
||||
class ModelVariables:
|
||||
"""Manages model-related variables and configurations"""
|
||||
|
||||
|
||||
@@ -97,6 +97,7 @@ def persist_business_events(log_entries):
|
||||
llm_metrics_total_tokens=entry.pop('llm_metrics_total_tokens', None),
|
||||
llm_metrics_prompt_tokens=entry.pop('llm_metrics_prompt_tokens', None),
|
||||
llm_metrics_completion_tokens=entry.pop('llm_metrics_completion_tokens', None),
|
||||
llm_metrics_nr_of_pages=entry.pop('llm_metrics_nr_of_pages', None),
|
||||
llm_metrics_total_time=entry.pop('llm_metrics_total_time', None),
|
||||
llm_metrics_call_count=entry.pop('llm_metrics_call_count', None),
|
||||
llm_interaction_type=entry.pop('llm_interaction_type', None),
|
||||
|
||||
@@ -7,6 +7,7 @@ from langchain_core.prompts import ChatPromptTemplate
|
||||
import re
|
||||
from langchain_core.runnables import RunnablePassthrough
|
||||
|
||||
from common.eveai_model.tracked_mistral_ocr_client import TrackedMistralOcrClient
|
||||
from common.extensions import minio_client
|
||||
from common.utils.model_utils import create_language_template, get_embedding_llm
|
||||
from .base_processor import BaseProcessor
|
||||
@@ -21,6 +22,7 @@ class PDFProcessor(BaseProcessor):
|
||||
self.chunk_size = catalog.max_chunk_size
|
||||
self.chunk_overlap = 0
|
||||
self.tuning = self.processor.tuning
|
||||
self.ocr_client = TrackedMistralOcrClient()
|
||||
|
||||
def process(self):
|
||||
self._log("Starting PDF processing")
|
||||
@@ -30,14 +32,10 @@ class PDFProcessor(BaseProcessor):
|
||||
self.document_version.bucket_name,
|
||||
self.document_version.object_name,
|
||||
)
|
||||
|
||||
with current_event.create_span("PDF Extraction"):
|
||||
extracted_content = self._extract_content(file_data)
|
||||
structured_content, title = self._structure_content(extracted_content)
|
||||
file_name = f"{self.document_version.bucket_name}_{self.document_version.object_name.replace("/", "_")}"
|
||||
|
||||
with current_event.create_span("Markdown Generation"):
|
||||
llm_chunks = self._split_content_for_llm(structured_content)
|
||||
markdown = self._process_chunks_with_llm(llm_chunks)
|
||||
markdown, title = self.ocr_client.process_pdf(file_name, file_data)
|
||||
|
||||
self._save_markdown(markdown)
|
||||
self._log("Finished processing PDF")
|
||||
|
||||
@@ -144,7 +144,8 @@ def delete_embeddings_for_document_version(document_version):
|
||||
|
||||
def embed_markdown(tenant, model_variables, document_version, catalog, processor, markdown, title):
|
||||
# Create potential chunks
|
||||
potential_chunks = create_potential_chunks_for_markdown(tenant.id, document_version, processor, markdown)
|
||||
potential_chunks = create_potential_chunks_for_markdown(tenant.id, document_version, processor, markdown,
|
||||
catalog.max_chunk_size)
|
||||
processor.log_tuning("Potential Chunks: ", {'potential chunks': potential_chunks})
|
||||
|
||||
# Combine chunks for embedding
|
||||
@@ -254,27 +255,286 @@ def embed_chunks(tenant, catalog, document_version, chunks):
|
||||
return new_embeddings
|
||||
|
||||
|
||||
def create_potential_chunks_for_markdown(tenant_id, document_version, processor, markdown):
|
||||
def create_potential_chunks_for_markdown(tenant_id, document_version, processor, markdown, max_chunk_size=2500):
|
||||
try:
|
||||
current_app.logger.info(f'Creating potential chunks for tenant {tenant_id}')
|
||||
heading_level = processor.configuration.get('chunking_heading_level', 2)
|
||||
configured_heading_level = processor.configuration.get('chunking_heading_level', 2)
|
||||
|
||||
headers_to_split_on = [
|
||||
(f"{'#' * i}", f"Header {i}") for i in range(1, min(heading_level + 1, 7))
|
||||
(f"{'#' * i}", f"Header {i}") for i in range(1, min(configured_heading_level + 1, 7))
|
||||
]
|
||||
|
||||
processor.log_tuning('Headers to split on', {'header list: ': headers_to_split_on})
|
||||
|
||||
markdown_splitter = MarkdownHeaderTextSplitter(headers_to_split_on, strip_headers=False)
|
||||
md_header_splits = markdown_splitter.split_text(markdown)
|
||||
potential_chunks = [doc.page_content for doc in md_header_splits]
|
||||
initial_chunks = [doc.page_content for doc in md_header_splits]
|
||||
final_chunks = []
|
||||
for chunk in initial_chunks:
|
||||
if len(chunk) <= max_chunk_size:
|
||||
final_chunks.append(chunk)
|
||||
else:
|
||||
# This chunk is too large, split it further
|
||||
processor.log_tuning('Further splitting required', {
|
||||
'chunk_size': len(chunk),
|
||||
'max_chunk_size': max_chunk_size
|
||||
})
|
||||
|
||||
return potential_chunks
|
||||
# Try splitting on deeper heading levels first
|
||||
deeper_chunks = split_on_deeper_headings(chunk, configured_heading_level, max_chunk_size)
|
||||
|
||||
# If deeper heading splits still exceed max size, split on paragraphs
|
||||
chunks_to_process = []
|
||||
for deeper_chunk in deeper_chunks:
|
||||
if len(deeper_chunk) <= max_chunk_size:
|
||||
chunks_to_process.append(deeper_chunk)
|
||||
else:
|
||||
paragraph_chunks = split_on_paragraphs(deeper_chunk, max_chunk_size)
|
||||
chunks_to_process.extend(paragraph_chunks)
|
||||
|
||||
final_chunks.extend(chunks_to_process)
|
||||
|
||||
processor.log_tuning('Final chunks', {
|
||||
'initial_chunk_count': len(initial_chunks),
|
||||
'final_chunk_count': len(final_chunks)
|
||||
})
|
||||
|
||||
return final_chunks
|
||||
except Exception as e:
|
||||
current_app.logger.error(f'Error creating potential chunks for tenant {tenant_id}, with error: {e}')
|
||||
raise
|
||||
|
||||
|
||||
def split_on_deeper_headings(chunk, already_split_level, max_chunk_size):
|
||||
"""
|
||||
Split a chunk on deeper heading levels than already used
|
||||
|
||||
Args:
|
||||
chunk: Markdown chunk to split
|
||||
already_split_level: Heading level already used for splitting
|
||||
max_chunk_size: Maximum allowed chunk size
|
||||
|
||||
Returns:
|
||||
List of chunks split on deeper headings
|
||||
"""
|
||||
# Define headers for deeper levels
|
||||
deeper_headers = [
|
||||
(f"{'#' * i}", f"Header {i}") for i in range(already_split_level + 1, 7)
|
||||
]
|
||||
|
||||
if not deeper_headers:
|
||||
# No deeper headers possible, return original chunk
|
||||
return [chunk]
|
||||
|
||||
splitter = MarkdownHeaderTextSplitter(deeper_headers, strip_headers=False)
|
||||
try:
|
||||
splits = splitter.split_text(chunk)
|
||||
return [doc.page_content for doc in splits]
|
||||
except Exception:
|
||||
# If splitting fails, return original chunk
|
||||
return [chunk]
|
||||
|
||||
|
||||
def split_on_paragraphs(chunk, max_chunk_size):
|
||||
"""
|
||||
Split a chunk on paragraph boundaries, preserving tables
|
||||
|
||||
Args:
|
||||
chunk: Markdown chunk to split
|
||||
max_chunk_size: Maximum allowed chunk size
|
||||
|
||||
Returns:
|
||||
List of chunks split on paragraph boundaries
|
||||
"""
|
||||
# Split the chunk into parts: regular paragraphs and tables
|
||||
parts = []
|
||||
current_part = ""
|
||||
in_table = False
|
||||
table_content = ""
|
||||
|
||||
lines = chunk.split('\n')
|
||||
|
||||
for i, line in enumerate(lines):
|
||||
# Check if this line starts a table
|
||||
if line.strip().startswith('|') and not in_table:
|
||||
# Add current content as a part if not empty
|
||||
if current_part.strip():
|
||||
parts.append(('text', current_part))
|
||||
current_part = ""
|
||||
|
||||
in_table = True
|
||||
table_content = line + '\n'
|
||||
|
||||
# Check if we're in a table
|
||||
elif in_table:
|
||||
table_content += line + '\n'
|
||||
|
||||
# Check if this line might end the table (empty line after a table line)
|
||||
if not line.strip() and i > 0 and lines[i - 1].strip().startswith('|'):
|
||||
parts.append(('table', table_content))
|
||||
table_content = ""
|
||||
in_table = False
|
||||
|
||||
# Regular content
|
||||
else:
|
||||
current_part += line + '\n'
|
||||
|
||||
# If we have a blank line, it's a paragraph boundary
|
||||
if not line.strip() and current_part.strip():
|
||||
parts.append(('text', current_part))
|
||||
current_part = ""
|
||||
|
||||
# Handle any remaining content
|
||||
if in_table and table_content.strip():
|
||||
parts.append(('table', table_content))
|
||||
elif current_part.strip():
|
||||
parts.append(('text', current_part))
|
||||
|
||||
# Now combine parts into chunks that respect max_chunk_size
|
||||
result_chunks = []
|
||||
current_chunk = ""
|
||||
|
||||
for part_type, content in parts:
|
||||
# If it's a table, we don't want to split it
|
||||
if part_type == 'table':
|
||||
# If adding the table would exceed max size, start a new chunk
|
||||
if len(current_chunk) + len(content) > max_chunk_size:
|
||||
if current_chunk:
|
||||
result_chunks.append(current_chunk)
|
||||
|
||||
# If the table itself exceeds max size, we have to split it anyway
|
||||
if len(content) > max_chunk_size:
|
||||
# Split table into multiple chunks, trying to keep rows together
|
||||
table_chunks = split_table(content, max_chunk_size)
|
||||
result_chunks.extend(table_chunks)
|
||||
else:
|
||||
current_chunk = content
|
||||
else:
|
||||
current_chunk += content
|
||||
|
||||
# For text parts, we can split more freely
|
||||
else:
|
||||
# If text is smaller than max size, try to add it
|
||||
if len(content) <= max_chunk_size:
|
||||
if len(current_chunk) + len(content) <= max_chunk_size:
|
||||
current_chunk += content
|
||||
else:
|
||||
result_chunks.append(current_chunk)
|
||||
current_chunk = content
|
||||
else:
|
||||
# Text part is too large, split it into paragraphs
|
||||
if current_chunk:
|
||||
result_chunks.append(current_chunk)
|
||||
current_chunk = ""
|
||||
|
||||
# Split by paragraphs (blank lines)
|
||||
paragraphs = content.split('\n\n')
|
||||
|
||||
for paragraph in paragraphs:
|
||||
paragraph_with_newlines = paragraph + '\n\n'
|
||||
|
||||
if len(paragraph_with_newlines) > max_chunk_size:
|
||||
# This single paragraph is too large, split by sentences
|
||||
sentences = re.split(r'(?<=[.!?])\s+', paragraph)
|
||||
current_sentence_chunk = ""
|
||||
|
||||
for sentence in sentences:
|
||||
sentence_with_space = sentence + ' '
|
||||
if len(current_sentence_chunk) + len(sentence_with_space) <= max_chunk_size:
|
||||
current_sentence_chunk += sentence_with_space
|
||||
else:
|
||||
if current_sentence_chunk:
|
||||
result_chunks.append(current_sentence_chunk.strip())
|
||||
|
||||
# If single sentence exceeds max size, we have to split it
|
||||
if len(sentence_with_space) > max_chunk_size:
|
||||
# Split sentence into chunks of max_chunk_size
|
||||
for i in range(0, len(sentence_with_space), max_chunk_size):
|
||||
result_chunks.append(sentence_with_space[i:i + max_chunk_size].strip())
|
||||
else:
|
||||
current_sentence_chunk = sentence_with_space
|
||||
|
||||
if current_sentence_chunk:
|
||||
result_chunks.append(current_sentence_chunk.strip())
|
||||
|
||||
elif len(current_chunk) + len(paragraph_with_newlines) <= max_chunk_size:
|
||||
current_chunk += paragraph_with_newlines
|
||||
else:
|
||||
if current_chunk:
|
||||
result_chunks.append(current_chunk.strip())
|
||||
current_chunk = paragraph_with_newlines
|
||||
|
||||
# Add the last chunk if there's anything left
|
||||
if current_chunk:
|
||||
result_chunks.append(current_chunk.strip())
|
||||
|
||||
return result_chunks
|
||||
|
||||
|
||||
def split_table(table_content, max_chunk_size):
|
||||
"""
|
||||
Split a table into multiple chunks, trying to keep rows together
|
||||
|
||||
Args:
|
||||
table_content: Markdown table content
|
||||
max_chunk_size: Maximum allowed chunk size
|
||||
|
||||
Returns:
|
||||
List of table chunks
|
||||
"""
|
||||
lines = table_content.split('\n')
|
||||
header_rows = []
|
||||
|
||||
# Find the header rows (usually first two rows: content and separator)
|
||||
for i, line in enumerate(lines):
|
||||
if i < 2 and line.strip().startswith('|'):
|
||||
header_rows.append(line)
|
||||
elif i == 2:
|
||||
break
|
||||
|
||||
header = '\n'.join(header_rows) + '\n' if header_rows else ''
|
||||
|
||||
# If even the header is too big, we have a problem
|
||||
if len(header) > max_chunk_size:
|
||||
# Just split the table content regardless of rows
|
||||
chunks = []
|
||||
current_chunk = ""
|
||||
|
||||
for line in lines:
|
||||
if len(current_chunk) + len(line) + 1 <= max_chunk_size:
|
||||
current_chunk += line + '\n'
|
||||
else:
|
||||
chunks.append(current_chunk)
|
||||
current_chunk = line + '\n'
|
||||
|
||||
if current_chunk:
|
||||
chunks.append(current_chunk)
|
||||
|
||||
return chunks
|
||||
|
||||
# Split the table with proper headers
|
||||
chunks = []
|
||||
current_chunk = header
|
||||
|
||||
for i, line in enumerate(lines):
|
||||
# Skip header rows
|
||||
if i < len(header_rows):
|
||||
continue
|
||||
|
||||
# If this row fits, add it
|
||||
if len(current_chunk) + len(line) + 1 <= max_chunk_size:
|
||||
current_chunk += line + '\n'
|
||||
else:
|
||||
# This row doesn't fit, start a new chunk
|
||||
chunks.append(current_chunk)
|
||||
current_chunk = header + line + '\n'
|
||||
|
||||
if current_chunk != header:
|
||||
chunks.append(current_chunk)
|
||||
|
||||
return chunks
|
||||
|
||||
|
||||
def combine_chunks_for_markdown(potential_chunks, min_chars, max_chars, processor):
|
||||
actual_chunks = []
|
||||
current_chunk = ""
|
||||
@@ -325,6 +585,7 @@ def combine_chunks_for_markdown(potential_chunks, min_chars, max_chars, processo
|
||||
# Force new chunk if pattern matches
|
||||
if chunking_patterns and matches_chunking_pattern(chunk, chunking_patterns):
|
||||
if current_chunk and current_length >= min_chars:
|
||||
current_app.logger.debug(f"Chunk Length of chunk to embed: {len(current_chunk)} ")
|
||||
actual_chunks.append(current_chunk)
|
||||
current_chunk = chunk
|
||||
current_length = chunk_length
|
||||
@@ -332,6 +593,7 @@ def combine_chunks_for_markdown(potential_chunks, min_chars, max_chars, processo
|
||||
|
||||
if current_length + chunk_length > max_chars:
|
||||
if current_length >= min_chars:
|
||||
current_app.logger.debug(f"Chunk Length of chunk to embed: {len(current_chunk)} ")
|
||||
actual_chunks.append(current_chunk)
|
||||
current_chunk = chunk
|
||||
current_length = chunk_length
|
||||
@@ -345,6 +607,7 @@ def combine_chunks_for_markdown(potential_chunks, min_chars, max_chars, processo
|
||||
|
||||
# Handle the last chunk
|
||||
if current_chunk and current_length >= 0:
|
||||
current_app.logger.debug(f"Chunk Length of chunk to embed: {len(current_chunk)} ")
|
||||
actual_chunks.append(current_chunk)
|
||||
|
||||
return actual_chunks
|
||||
|
||||
@@ -0,0 +1,31 @@
|
||||
"""Add nr_of_pages to llm_metrics in BusinessEvent
|
||||
|
||||
Revision ID: 605395afc22f
|
||||
Revises: cfee2c5bcd7a
|
||||
Create Date: 2025-04-16 07:25:43.959618
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = '605395afc22f'
|
||||
down_revision = 'cfee2c5bcd7a'
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade():
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table('business_event_log', schema=None) as batch_op:
|
||||
batch_op.add_column(sa.Column('llm_metrics_nr_of_pages', sa.Integer(), nullable=True))
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade():
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table('business_event_log', schema=None) as batch_op:
|
||||
batch_op.drop_column('llm_metrics_nr_of_pages')
|
||||
|
||||
# ### end Alembic commands ###
|
||||
@@ -1,7 +1,7 @@
|
||||
alembic~=1.14.1
|
||||
alembic~=1.15.2
|
||||
annotated-types~=0.7.0
|
||||
bcrypt~=4.1.3
|
||||
beautifulsoup4~=4.12.3
|
||||
bcrypt~=4.3.0
|
||||
beautifulsoup4~=4.13.4
|
||||
celery~=5.4.0
|
||||
certifi~=2024.7.4
|
||||
chardet~=5.2.0
|
||||
@@ -9,29 +9,29 @@ cors~=1.0.1
|
||||
Flask~=3.1.0
|
||||
Flask-BabelEx~=0.9.4
|
||||
Flask-Bootstrap~=3.3.7.1
|
||||
Flask-Cors~=5.0.0
|
||||
Flask-Cors~=5.0.1
|
||||
Flask-JWT-Extended~=4.7.1
|
||||
Flask-Login~=0.6.3
|
||||
flask-mailman~=1.1.1
|
||||
Flask-Migrate~=4.1.0
|
||||
Flask-Principal~=0.4.0
|
||||
Flask-Security-Too~=5.6.0
|
||||
Flask-Security-Too~=5.6.1
|
||||
Flask-Session~=0.8.0
|
||||
Flask-SQLAlchemy~=3.1.1
|
||||
Flask-WTF~=1.2.1
|
||||
gevent~=24.2.1
|
||||
gevent~=24.11.1
|
||||
gevent-websocket~=0.10.1
|
||||
greenlet~=3.0.3
|
||||
gunicorn~=22.0.0
|
||||
Jinja2~=3.1.4
|
||||
Jinja2~=3.1.6
|
||||
kombu~=5.3.7
|
||||
langchain~=0.3.0
|
||||
langchain-anthropic~=0.2.0
|
||||
langchain-community~=0.3.0
|
||||
langchain-core~=0.3.0
|
||||
langchain-mistralai~=0.2.0
|
||||
langchain-openai~=0.3.5
|
||||
langchain-postgres~=0.0.12
|
||||
langchain~=0.3.23
|
||||
langchain-anthropic~=0.3.11
|
||||
langchain-community~=0.3.21
|
||||
langchain-core~=0.3.52
|
||||
langchain-mistralai~=0.2.10
|
||||
langchain-openai~=0.3.13
|
||||
langchain-postgres~=0.0.14
|
||||
langchain-text-splitters~=0.3.0
|
||||
langcodes~=3.4.0
|
||||
langdetect~=1.0.9
|
||||
@@ -41,7 +41,7 @@ pg8000~=1.31.2
|
||||
pgvector~=0.2.5
|
||||
pycryptodome~=3.20.0
|
||||
pydantic~=2.9.1
|
||||
PyJWT~=2.8.0
|
||||
PyJWT~=2.10.1
|
||||
python-dateutil~=2.9.0.post0
|
||||
python-engineio~=4.9.1
|
||||
python-iso639~=2024.4.27
|
||||
@@ -50,11 +50,11 @@ pytz~=2024.1
|
||||
PyYAML~=6.0.2
|
||||
redis~=5.0.4
|
||||
requests~=2.32.3
|
||||
SQLAlchemy~=2.0.35
|
||||
SQLAlchemy~=2.0.40
|
||||
tiktoken~=0.7.0
|
||||
tzdata~=2024.1
|
||||
urllib3~=2.2.2
|
||||
WTForms~=3.1.2
|
||||
WTForms~=3.2.1
|
||||
wtforms-html5~=0.6.1
|
||||
zxcvbn~=4.4.28
|
||||
groq~=0.9.0
|
||||
@@ -84,10 +84,10 @@ typing_extensions~=4.12.2
|
||||
babel~=2.16.0
|
||||
dogpile.cache~=1.3.3
|
||||
python-docx~=1.1.2
|
||||
crewai~=0.108.0
|
||||
crewai~=0.114.0
|
||||
sseclient~=0.0.27
|
||||
termcolor~=2.5.0
|
||||
mistral-common~=1.5.3
|
||||
mistralai~=1.5.0
|
||||
mistralai~=1.6.0
|
||||
contextvars~=2.4
|
||||
pandas~=2.2.3
|
||||
Reference in New Issue
Block a user