- Significantly changed the PDF Processor to use Mistral's OCR model

- ensure very long chunks get split into smaller chunks
- ensure TrackedMistralAIEmbedding is batched if needed to ensure correct execution
- upgraded some of the packages to a higher version
This commit is contained in:
Josako
2025-04-16 15:39:16 +02:00
parent 5f58417d24
commit 4bf12db142
10 changed files with 518 additions and 91 deletions

View File

@@ -9,32 +9,133 @@ from mistralai import Mistral
class TrackedMistralAIEmbeddings(EveAIEmbeddings):
def __init__(self, model: str = "mistral_embed"):
def __init__(self, model: str = "mistral_embed", batch_size: int = 10):
"""
Initialize the TrackedMistralAIEmbeddings class.
Args:
model: The embedding model to use
batch_size: Maximum number of texts to send in a single API call
"""
api_key = current_app.config['MISTRAL_API_KEY']
self.client = Mistral(
api_key=api_key
)
self.model = model
self.batch_size = batch_size
super().__init__()
def embed_documents(self, texts: list[str]) -> list[list[float]]:
start_time = time.time()
result = self.client.embeddings.create(
model=self.model,
inputs=texts
)
end_time = time.time()
"""
Embed a list of texts, processing in batches to avoid API limitations.
metrics = {
'total_tokens': result.usage.total_tokens,
'prompt_tokens': result.usage.prompt_tokens, # For embeddings, all tokens are prompt tokens
'completion_tokens': result.usage.completion_tokens,
'time_elapsed': end_time - start_time,
'interaction_type': 'Embedding',
}
current_event.log_llm_metrics(metrics)
Args:
texts: A list of texts to embed
embeddings = [embedding.embedding for embedding in result.data]
Returns:
A list of embeddings, one for each input text
"""
if not texts:
return []
return embeddings
all_embeddings = []
# Process texts in batches
for i in range(0, len(texts), self.batch_size):
batch = texts[i:i + self.batch_size]
batch_num = i // self.batch_size + 1
current_app.logger.debug(f"Processing embedding batch {batch_num}, size: {len(batch)}")
start_time = time.time()
try:
result = self.client.embeddings.create(
model=self.model,
inputs=batch
)
end_time = time.time()
batch_time = end_time - start_time
batch_embeddings = [embedding.embedding for embedding in result.data]
all_embeddings.extend(batch_embeddings)
# Log metrics for this batch
metrics = {
'total_tokens': result.usage.total_tokens,
'prompt_tokens': result.usage.prompt_tokens,
'completion_tokens': result.usage.completion_tokens,
'time_elapsed': batch_time,
'interaction_type': 'Embedding',
'batch': batch_num,
'batch_size': len(batch)
}
current_event.log_llm_metrics(metrics)
current_app.logger.debug(f"Batch {batch_num} processed: {len(batch)} texts, "
f"{result.usage.total_tokens} tokens, {batch_time:.2f}s")
# If processing multiple batches, add a small delay to avoid rate limits
if len(texts) > self.batch_size and i + self.batch_size < len(texts):
time.sleep(0.25) # 250ms pause between batches
except Exception as e:
current_app.logger.error(f"Error in embedding batch {batch_num}: {str(e)}")
# If a batch fails, try to process each text individually
for j, text in enumerate(batch):
try:
current_app.logger.debug(f"Attempting individual embedding for item {i + j}")
single_start_time = time.time()
single_result = self.client.embeddings.create(
model=self.model,
inputs=[text]
)
single_end_time = time.time()
# Add the single embedding
single_embedding = single_result.data[0].embedding
all_embeddings.append(single_embedding)
# Log metrics for this individual embedding
single_metrics = {
'total_tokens': single_result.usage.total_tokens,
'prompt_tokens': single_result.usage.prompt_tokens,
'completion_tokens': single_result.usage.completion_tokens,
'time_elapsed': single_end_time - single_start_time,
'interaction_type': 'Embedding',
'batch': f"{batch_num}-recovery-{j}",
'batch_size': 1
}
current_event.log_llm_metrics(single_metrics)
except Exception as inner_e:
current_app.logger.error(f"Failed to embed individual text at index {i + j}: {str(inner_e)}")
# Add a zero vector as a placeholder for failed embeddings
# Use the correct dimensionality for the model (1024 for mistral_embed)
embedding_dim = 1024
all_embeddings.append([0.0] * embedding_dim)
total_batches = (len(texts) + self.batch_size - 1) // self.batch_size
current_app.logger.info(f"Embedded {len(texts)} texts in {total_batches} batches")
return all_embeddings
# def embed_documents(self, texts: list[str]) -> list[list[float]]:
# start_time = time.time()
# result = self.client.embeddings.create(
# model=self.model,
# inputs=texts
# )
# end_time = time.time()
#
# metrics = {
# 'total_tokens': result.usage.total_tokens,
# 'prompt_tokens': result.usage.prompt_tokens, # For embeddings, all tokens are prompt tokens
# 'completion_tokens': result.usage.completion_tokens,
# 'time_elapsed': end_time - start_time,
# 'interaction_type': 'Embedding',
# }
# current_event.log_llm_metrics(metrics)
#
# embeddings = [embedding.embedding for embedding in result.data]
#
# return embeddings

View File

@@ -0,0 +1,53 @@
import re
import time
from flask import current_app
from mistralai import Mistral
from common.utils.business_event_context import current_event
class TrackedMistralOcrClient:
def __init__(self):
api_key = current_app.config['MISTRAL_API_KEY']
self.client = Mistral(
api_key=api_key,
)
self.model = "mistral-ocr-latest"
def _get_title(self, markdown):
# Look for the first level-1 heading
match = re.search(r'^# (.+)', markdown, re.MULTILINE)
return match.group(1).strip() if match else None
def process_pdf(self, file_name, file_content):
start_time = time.time()
uploaded_pdf = self.client.files.upload(
file={
"file_name": file_name,
"content": file_content
},
purpose="ocr"
)
signed_url = self.client.files.get_signed_url(file_id=uploaded_pdf.id)
ocr_response = self.client.ocr.process(
model=self.model,
document={
"type": "document_url",
"document_url": signed_url.url
},
include_image_base64=False
)
nr_of_pages = len(ocr_response.pages)
all_markdown = " ".join(page.markdown for page in ocr_response.pages)
title = self._get_title(all_markdown)
end_time = time.time()
metrics = {
'nr_of_pages': nr_of_pages,
'time_elapsed': end_time - start_time,
'interaction_type': 'OCR',
}
current_event.log_llm_metrics(metrics)
return all_markdown, title

View File

@@ -25,6 +25,7 @@ class BusinessEventLog(db.Model):
llm_metrics_prompt_tokens = db.Column(db.Integer)
llm_metrics_completion_tokens = db.Column(db.Integer)
llm_metrics_total_time = db.Column(db.Float)
llm_metrics_nr_of_pages = db.Column(db.Integer)
llm_metrics_call_count = db.Column(db.Integer)
llm_interaction_type = db.Column(db.String(20))
message = db.Column(db.Text)

View File

@@ -106,6 +106,7 @@ class BusinessEvent:
'total_tokens': 0,
'prompt_tokens': 0,
'completion_tokens': 0,
'nr_of_pages': 0,
'total_time': 0,
'call_count': 0,
'interaction_type': None
@@ -121,13 +122,6 @@ class BusinessEvent:
if self.specialist_type_version else ""
self.span_name_str = ""
current_app.logger.debug(f"Labels for metrics: "
f"tenant_id={self.tenant_id_str}, "
f"event_type={self.event_type_str},"
f"specialist_id={self.specialist_id_str}, "
f"specialist_type={self.specialist_type_str}, " +
f"specialist_type_version={self.specialist_type_version_str}")
# Increment concurrent events gauge when initialized
CONCURRENT_TRACES.labels(
tenant_id=self.tenant_id_str,
@@ -168,24 +162,17 @@ class BusinessEvent:
raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{attribute}'")
def update_llm_metrics(self, metrics: dict):
self.llm_metrics['total_tokens'] += metrics['total_tokens']
self.llm_metrics['prompt_tokens'] += metrics['prompt_tokens']
self.llm_metrics['completion_tokens'] += metrics['completion_tokens']
self.llm_metrics['total_time'] += metrics['time_elapsed']
self.llm_metrics['total_tokens'] += metrics.get('total_tokens', 0)
self.llm_metrics['prompt_tokens'] += metrics.get('prompt_tokens', 0)
self.llm_metrics['completion_tokens'] += metrics.get('completion_tokens', 0)
self.llm_metrics['nr_of_pages'] += metrics.get('nr_of_pages', 0)
self.llm_metrics['total_time'] += metrics.get('time_elapsed', 0)
self.llm_metrics['call_count'] += 1
self.llm_metrics['interaction_type'] = metrics['interaction_type']
# Track in Prometheus metrics
interaction_type_str = sanitize_label(metrics['interaction_type']) if metrics['interaction_type'] else ""
current_app.logger.debug(f"Labels for metrics: "
f"tenant_id={self.tenant_id_str}, "
f"event_type={self.event_type_str},"
f"interaction_type={interaction_type_str}, "
f"specialist_id={self.specialist_id_str}, "
f"specialist_type={self.specialist_type_str}, "
f"specialist_type_version={self.specialist_type_version_str}")
# Track token usage
LLM_TOKENS_COUNTER.labels(
tenant_id=self.tenant_id_str,
@@ -195,7 +182,7 @@ class BusinessEvent:
specialist_id=self.specialist_id_str,
specialist_type=self.specialist_type_str,
specialist_type_version=self.specialist_type_version_str
).inc(metrics['total_tokens'])
).inc(metrics.get('total_tokens', 0))
LLM_TOKENS_COUNTER.labels(
tenant_id=self.tenant_id_str,
@@ -205,7 +192,7 @@ class BusinessEvent:
specialist_id=self.specialist_id_str,
specialist_type=self.specialist_type_str,
specialist_type_version=self.specialist_type_version_str
).inc(metrics['prompt_tokens'])
).inc(metrics.get('prompt_tokens', 0))
LLM_TOKENS_COUNTER.labels(
tenant_id=self.tenant_id_str,
@@ -215,7 +202,7 @@ class BusinessEvent:
specialist_id=self.specialist_id_str,
specialist_type=self.specialist_type_str,
specialist_type_version=self.specialist_type_version_str
).inc(metrics['completion_tokens'])
).inc(metrics.get('completion_tokens', 0))
# Track duration
LLM_DURATION.labels(
@@ -225,7 +212,7 @@ class BusinessEvent:
specialist_id=self.specialist_id_str,
specialist_type=self.specialist_type_str,
specialist_type_version=self.specialist_type_version_str
).observe(metrics['time_elapsed'])
).observe(metrics.get('time_elapsed', 0))
# Track call count
LLM_CALLS_COUNTER.labels(
@@ -243,6 +230,7 @@ class BusinessEvent:
self.llm_metrics['total_tokens'] = 0
self.llm_metrics['prompt_tokens'] = 0
self.llm_metrics['completion_tokens'] = 0
self.llm_metrics['nr_of_pages'] = 0
self.llm_metrics['total_time'] = 0
self.llm_metrics['call_count'] = 0
self.llm_metrics['interaction_type'] = None
@@ -270,14 +258,6 @@ class BusinessEvent:
# Track start time for the span
span_start_time = time.time()
current_app.logger.debug(f"Labels for metrics: "
f"tenant_id={self.tenant_id_str}, "
f"event_type={self.event_type_str}, "
f"activity_name={self.span_name_str}, "
f"specialist_id={self.specialist_id_str}, "
f"specialist_type={self.specialist_type_str}, "
f"specialist_type_version={self.specialist_type_version_str}")
# Increment span metrics - using span_name as activity_name for metrics
SPAN_COUNTER.labels(
tenant_id=self.tenant_id_str,
@@ -363,14 +343,6 @@ class BusinessEvent:
# Track start time for the span
span_start_time = time.time()
current_app.logger.debug(f"Labels for metrics: "
f"tenant_id={self.tenant_id_str}, "
f"event_type={self.event_type_str}, "
f"activity_name={self.span_name_str}, "
f"specialist_id={self.specialist_id_str}, "
f"specialist_type={self.specialist_type_str}, "
f"specialist_type_version={self.specialist_type_version_str}")
# Increment span metrics - using span_name as activity_name for metrics
SPAN_COUNTER.labels(
tenant_id=self.tenant_id_str,
@@ -487,10 +459,11 @@ class BusinessEvent:
'specialist_type': self.specialist_type,
'specialist_type_version': self.specialist_type_version,
'environment': self.environment,
'llm_metrics_total_tokens': metrics['total_tokens'],
'llm_metrics_prompt_tokens': metrics['prompt_tokens'],
'llm_metrics_completion_tokens': metrics['completion_tokens'],
'llm_metrics_total_time': metrics['time_elapsed'],
'llm_metrics_total_tokens': metrics.get('total_tokens', 0),
'llm_metrics_prompt_tokens': metrics.get('prompt_tokens', 0),
'llm_metrics_completion_tokens': metrics.get('completion_tokens', 0),
'llm_metrics_nr_of_pages': metrics.get('nr_of_pages', 0),
'llm_metrics_total_time': metrics.get('time_elapsed', 0),
'llm_interaction_type': metrics['interaction_type'],
'message': message,
}
@@ -518,6 +491,7 @@ class BusinessEvent:
'llm_metrics_total_tokens': self.llm_metrics['total_tokens'],
'llm_metrics_prompt_tokens': self.llm_metrics['prompt_tokens'],
'llm_metrics_completion_tokens': self.llm_metrics['completion_tokens'],
'llm_metrics_nr_of_pages': self.llm_metrics['nr_of_pages'],
'llm_metrics_total_time': self.llm_metrics['total_time'],
'llm_metrics_call_count': self.llm_metrics['call_count'],
'llm_interaction_type': self.llm_metrics['interaction_type'],

View File

@@ -135,6 +135,11 @@ def get_crewai_llm(full_model_name='mistral.mistral-large-latest', temperature=0
return llm
def process_pdf():
full_model_name = 'mistral-ocr-latest'
class ModelVariables:
"""Manages model-related variables and configurations"""

View File

@@ -97,6 +97,7 @@ def persist_business_events(log_entries):
llm_metrics_total_tokens=entry.pop('llm_metrics_total_tokens', None),
llm_metrics_prompt_tokens=entry.pop('llm_metrics_prompt_tokens', None),
llm_metrics_completion_tokens=entry.pop('llm_metrics_completion_tokens', None),
llm_metrics_nr_of_pages=entry.pop('llm_metrics_nr_of_pages', None),
llm_metrics_total_time=entry.pop('llm_metrics_total_time', None),
llm_metrics_call_count=entry.pop('llm_metrics_call_count', None),
llm_interaction_type=entry.pop('llm_interaction_type', None),

View File

@@ -7,6 +7,7 @@ from langchain_core.prompts import ChatPromptTemplate
import re
from langchain_core.runnables import RunnablePassthrough
from common.eveai_model.tracked_mistral_ocr_client import TrackedMistralOcrClient
from common.extensions import minio_client
from common.utils.model_utils import create_language_template, get_embedding_llm
from .base_processor import BaseProcessor
@@ -21,6 +22,7 @@ class PDFProcessor(BaseProcessor):
self.chunk_size = catalog.max_chunk_size
self.chunk_overlap = 0
self.tuning = self.processor.tuning
self.ocr_client = TrackedMistralOcrClient()
def process(self):
self._log("Starting PDF processing")
@@ -30,14 +32,10 @@ class PDFProcessor(BaseProcessor):
self.document_version.bucket_name,
self.document_version.object_name,
)
with current_event.create_span("PDF Extraction"):
extracted_content = self._extract_content(file_data)
structured_content, title = self._structure_content(extracted_content)
file_name = f"{self.document_version.bucket_name}_{self.document_version.object_name.replace("/", "_")}"
with current_event.create_span("Markdown Generation"):
llm_chunks = self._split_content_for_llm(structured_content)
markdown = self._process_chunks_with_llm(llm_chunks)
markdown, title = self.ocr_client.process_pdf(file_name, file_data)
self._save_markdown(markdown)
self._log("Finished processing PDF")

View File

@@ -144,7 +144,8 @@ def delete_embeddings_for_document_version(document_version):
def embed_markdown(tenant, model_variables, document_version, catalog, processor, markdown, title):
# Create potential chunks
potential_chunks = create_potential_chunks_for_markdown(tenant.id, document_version, processor, markdown)
potential_chunks = create_potential_chunks_for_markdown(tenant.id, document_version, processor, markdown,
catalog.max_chunk_size)
processor.log_tuning("Potential Chunks: ", {'potential chunks': potential_chunks})
# Combine chunks for embedding
@@ -254,27 +255,286 @@ def embed_chunks(tenant, catalog, document_version, chunks):
return new_embeddings
def create_potential_chunks_for_markdown(tenant_id, document_version, processor, markdown):
def create_potential_chunks_for_markdown(tenant_id, document_version, processor, markdown, max_chunk_size=2500):
try:
current_app.logger.info(f'Creating potential chunks for tenant {tenant_id}')
heading_level = processor.configuration.get('chunking_heading_level', 2)
configured_heading_level = processor.configuration.get('chunking_heading_level', 2)
headers_to_split_on = [
(f"{'#' * i}", f"Header {i}") for i in range(1, min(heading_level + 1, 7))
(f"{'#' * i}", f"Header {i}") for i in range(1, min(configured_heading_level + 1, 7))
]
processor.log_tuning('Headers to split on', {'header list: ': headers_to_split_on})
markdown_splitter = MarkdownHeaderTextSplitter(headers_to_split_on, strip_headers=False)
md_header_splits = markdown_splitter.split_text(markdown)
potential_chunks = [doc.page_content for doc in md_header_splits]
initial_chunks = [doc.page_content for doc in md_header_splits]
final_chunks = []
for chunk in initial_chunks:
if len(chunk) <= max_chunk_size:
final_chunks.append(chunk)
else:
# This chunk is too large, split it further
processor.log_tuning('Further splitting required', {
'chunk_size': len(chunk),
'max_chunk_size': max_chunk_size
})
return potential_chunks
# Try splitting on deeper heading levels first
deeper_chunks = split_on_deeper_headings(chunk, configured_heading_level, max_chunk_size)
# If deeper heading splits still exceed max size, split on paragraphs
chunks_to_process = []
for deeper_chunk in deeper_chunks:
if len(deeper_chunk) <= max_chunk_size:
chunks_to_process.append(deeper_chunk)
else:
paragraph_chunks = split_on_paragraphs(deeper_chunk, max_chunk_size)
chunks_to_process.extend(paragraph_chunks)
final_chunks.extend(chunks_to_process)
processor.log_tuning('Final chunks', {
'initial_chunk_count': len(initial_chunks),
'final_chunk_count': len(final_chunks)
})
return final_chunks
except Exception as e:
current_app.logger.error(f'Error creating potential chunks for tenant {tenant_id}, with error: {e}')
raise
def split_on_deeper_headings(chunk, already_split_level, max_chunk_size):
"""
Split a chunk on deeper heading levels than already used
Args:
chunk: Markdown chunk to split
already_split_level: Heading level already used for splitting
max_chunk_size: Maximum allowed chunk size
Returns:
List of chunks split on deeper headings
"""
# Define headers for deeper levels
deeper_headers = [
(f"{'#' * i}", f"Header {i}") for i in range(already_split_level + 1, 7)
]
if not deeper_headers:
# No deeper headers possible, return original chunk
return [chunk]
splitter = MarkdownHeaderTextSplitter(deeper_headers, strip_headers=False)
try:
splits = splitter.split_text(chunk)
return [doc.page_content for doc in splits]
except Exception:
# If splitting fails, return original chunk
return [chunk]
def split_on_paragraphs(chunk, max_chunk_size):
"""
Split a chunk on paragraph boundaries, preserving tables
Args:
chunk: Markdown chunk to split
max_chunk_size: Maximum allowed chunk size
Returns:
List of chunks split on paragraph boundaries
"""
# Split the chunk into parts: regular paragraphs and tables
parts = []
current_part = ""
in_table = False
table_content = ""
lines = chunk.split('\n')
for i, line in enumerate(lines):
# Check if this line starts a table
if line.strip().startswith('|') and not in_table:
# Add current content as a part if not empty
if current_part.strip():
parts.append(('text', current_part))
current_part = ""
in_table = True
table_content = line + '\n'
# Check if we're in a table
elif in_table:
table_content += line + '\n'
# Check if this line might end the table (empty line after a table line)
if not line.strip() and i > 0 and lines[i - 1].strip().startswith('|'):
parts.append(('table', table_content))
table_content = ""
in_table = False
# Regular content
else:
current_part += line + '\n'
# If we have a blank line, it's a paragraph boundary
if not line.strip() and current_part.strip():
parts.append(('text', current_part))
current_part = ""
# Handle any remaining content
if in_table and table_content.strip():
parts.append(('table', table_content))
elif current_part.strip():
parts.append(('text', current_part))
# Now combine parts into chunks that respect max_chunk_size
result_chunks = []
current_chunk = ""
for part_type, content in parts:
# If it's a table, we don't want to split it
if part_type == 'table':
# If adding the table would exceed max size, start a new chunk
if len(current_chunk) + len(content) > max_chunk_size:
if current_chunk:
result_chunks.append(current_chunk)
# If the table itself exceeds max size, we have to split it anyway
if len(content) > max_chunk_size:
# Split table into multiple chunks, trying to keep rows together
table_chunks = split_table(content, max_chunk_size)
result_chunks.extend(table_chunks)
else:
current_chunk = content
else:
current_chunk += content
# For text parts, we can split more freely
else:
# If text is smaller than max size, try to add it
if len(content) <= max_chunk_size:
if len(current_chunk) + len(content) <= max_chunk_size:
current_chunk += content
else:
result_chunks.append(current_chunk)
current_chunk = content
else:
# Text part is too large, split it into paragraphs
if current_chunk:
result_chunks.append(current_chunk)
current_chunk = ""
# Split by paragraphs (blank lines)
paragraphs = content.split('\n\n')
for paragraph in paragraphs:
paragraph_with_newlines = paragraph + '\n\n'
if len(paragraph_with_newlines) > max_chunk_size:
# This single paragraph is too large, split by sentences
sentences = re.split(r'(?<=[.!?])\s+', paragraph)
current_sentence_chunk = ""
for sentence in sentences:
sentence_with_space = sentence + ' '
if len(current_sentence_chunk) + len(sentence_with_space) <= max_chunk_size:
current_sentence_chunk += sentence_with_space
else:
if current_sentence_chunk:
result_chunks.append(current_sentence_chunk.strip())
# If single sentence exceeds max size, we have to split it
if len(sentence_with_space) > max_chunk_size:
# Split sentence into chunks of max_chunk_size
for i in range(0, len(sentence_with_space), max_chunk_size):
result_chunks.append(sentence_with_space[i:i + max_chunk_size].strip())
else:
current_sentence_chunk = sentence_with_space
if current_sentence_chunk:
result_chunks.append(current_sentence_chunk.strip())
elif len(current_chunk) + len(paragraph_with_newlines) <= max_chunk_size:
current_chunk += paragraph_with_newlines
else:
if current_chunk:
result_chunks.append(current_chunk.strip())
current_chunk = paragraph_with_newlines
# Add the last chunk if there's anything left
if current_chunk:
result_chunks.append(current_chunk.strip())
return result_chunks
def split_table(table_content, max_chunk_size):
"""
Split a table into multiple chunks, trying to keep rows together
Args:
table_content: Markdown table content
max_chunk_size: Maximum allowed chunk size
Returns:
List of table chunks
"""
lines = table_content.split('\n')
header_rows = []
# Find the header rows (usually first two rows: content and separator)
for i, line in enumerate(lines):
if i < 2 and line.strip().startswith('|'):
header_rows.append(line)
elif i == 2:
break
header = '\n'.join(header_rows) + '\n' if header_rows else ''
# If even the header is too big, we have a problem
if len(header) > max_chunk_size:
# Just split the table content regardless of rows
chunks = []
current_chunk = ""
for line in lines:
if len(current_chunk) + len(line) + 1 <= max_chunk_size:
current_chunk += line + '\n'
else:
chunks.append(current_chunk)
current_chunk = line + '\n'
if current_chunk:
chunks.append(current_chunk)
return chunks
# Split the table with proper headers
chunks = []
current_chunk = header
for i, line in enumerate(lines):
# Skip header rows
if i < len(header_rows):
continue
# If this row fits, add it
if len(current_chunk) + len(line) + 1 <= max_chunk_size:
current_chunk += line + '\n'
else:
# This row doesn't fit, start a new chunk
chunks.append(current_chunk)
current_chunk = header + line + '\n'
if current_chunk != header:
chunks.append(current_chunk)
return chunks
def combine_chunks_for_markdown(potential_chunks, min_chars, max_chars, processor):
actual_chunks = []
current_chunk = ""
@@ -325,6 +585,7 @@ def combine_chunks_for_markdown(potential_chunks, min_chars, max_chars, processo
# Force new chunk if pattern matches
if chunking_patterns and matches_chunking_pattern(chunk, chunking_patterns):
if current_chunk and current_length >= min_chars:
current_app.logger.debug(f"Chunk Length of chunk to embed: {len(current_chunk)} ")
actual_chunks.append(current_chunk)
current_chunk = chunk
current_length = chunk_length
@@ -332,6 +593,7 @@ def combine_chunks_for_markdown(potential_chunks, min_chars, max_chars, processo
if current_length + chunk_length > max_chars:
if current_length >= min_chars:
current_app.logger.debug(f"Chunk Length of chunk to embed: {len(current_chunk)} ")
actual_chunks.append(current_chunk)
current_chunk = chunk
current_length = chunk_length
@@ -345,6 +607,7 @@ def combine_chunks_for_markdown(potential_chunks, min_chars, max_chars, processo
# Handle the last chunk
if current_chunk and current_length >= 0:
current_app.logger.debug(f"Chunk Length of chunk to embed: {len(current_chunk)} ")
actual_chunks.append(current_chunk)
return actual_chunks

View File

@@ -0,0 +1,31 @@
"""Add nr_of_pages to llm_metrics in BusinessEvent
Revision ID: 605395afc22f
Revises: cfee2c5bcd7a
Create Date: 2025-04-16 07:25:43.959618
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = '605395afc22f'
down_revision = 'cfee2c5bcd7a'
branch_labels = None
depends_on = None
def upgrade():
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table('business_event_log', schema=None) as batch_op:
batch_op.add_column(sa.Column('llm_metrics_nr_of_pages', sa.Integer(), nullable=True))
# ### end Alembic commands ###
def downgrade():
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table('business_event_log', schema=None) as batch_op:
batch_op.drop_column('llm_metrics_nr_of_pages')
# ### end Alembic commands ###

View File

@@ -1,7 +1,7 @@
alembic~=1.14.1
alembic~=1.15.2
annotated-types~=0.7.0
bcrypt~=4.1.3
beautifulsoup4~=4.12.3
bcrypt~=4.3.0
beautifulsoup4~=4.13.4
celery~=5.4.0
certifi~=2024.7.4
chardet~=5.2.0
@@ -9,29 +9,29 @@ cors~=1.0.1
Flask~=3.1.0
Flask-BabelEx~=0.9.4
Flask-Bootstrap~=3.3.7.1
Flask-Cors~=5.0.0
Flask-Cors~=5.0.1
Flask-JWT-Extended~=4.7.1
Flask-Login~=0.6.3
flask-mailman~=1.1.1
Flask-Migrate~=4.1.0
Flask-Principal~=0.4.0
Flask-Security-Too~=5.6.0
Flask-Security-Too~=5.6.1
Flask-Session~=0.8.0
Flask-SQLAlchemy~=3.1.1
Flask-WTF~=1.2.1
gevent~=24.2.1
gevent~=24.11.1
gevent-websocket~=0.10.1
greenlet~=3.0.3
gunicorn~=22.0.0
Jinja2~=3.1.4
Jinja2~=3.1.6
kombu~=5.3.7
langchain~=0.3.0
langchain-anthropic~=0.2.0
langchain-community~=0.3.0
langchain-core~=0.3.0
langchain-mistralai~=0.2.0
langchain-openai~=0.3.5
langchain-postgres~=0.0.12
langchain~=0.3.23
langchain-anthropic~=0.3.11
langchain-community~=0.3.21
langchain-core~=0.3.52
langchain-mistralai~=0.2.10
langchain-openai~=0.3.13
langchain-postgres~=0.0.14
langchain-text-splitters~=0.3.0
langcodes~=3.4.0
langdetect~=1.0.9
@@ -41,7 +41,7 @@ pg8000~=1.31.2
pgvector~=0.2.5
pycryptodome~=3.20.0
pydantic~=2.9.1
PyJWT~=2.8.0
PyJWT~=2.10.1
python-dateutil~=2.9.0.post0
python-engineio~=4.9.1
python-iso639~=2024.4.27
@@ -50,11 +50,11 @@ pytz~=2024.1
PyYAML~=6.0.2
redis~=5.0.4
requests~=2.32.3
SQLAlchemy~=2.0.35
SQLAlchemy~=2.0.40
tiktoken~=0.7.0
tzdata~=2024.1
urllib3~=2.2.2
WTForms~=3.1.2
WTForms~=3.2.1
wtforms-html5~=0.6.1
zxcvbn~=4.4.28
groq~=0.9.0
@@ -84,10 +84,10 @@ typing_extensions~=4.12.2
babel~=2.16.0
dogpile.cache~=1.3.3
python-docx~=1.1.2
crewai~=0.108.0
crewai~=0.114.0
sseclient~=0.0.27
termcolor~=2.5.0
mistral-common~=1.5.3
mistralai~=1.5.0
mistralai~=1.6.0
contextvars~=2.4
pandas~=2.2.3