Start log tracing to log business events. Storage in both database and logging-backend.

This commit is contained in:
Josako
2024-09-25 15:39:25 +02:00
parent a740c96630
commit ee1b0f1cfa
8 changed files with 370 additions and 321 deletions

View File

@@ -1,28 +1,21 @@
from common.extensions import db
from sqlalchemy.dialects.postgresql import JSONB
import sqlalchemy as sa
class LLMUsageMetric(db.Model):
class BusinessEventLog(db.Model):
__bind_key__ = 'public'
__table_args__ = {'schema': 'public'}
id = db.Column(db.Integer, primary_key=True)
tenant_id = db.Column(db.Integer, nullable=False)
environment = db.Column(db.String(20), nullable=False)
activity = db.Column(db.String(20), nullable=False)
sub_activity = db.Column(db.String(20), nullable=False)
activity_detail = db.Column(db.String(50), nullable=True)
session_id = db.Column(db.String(50), nullable=True) # Chat Session ID
interaction_id = db.Column(db.Integer, nullable=True) # Chat Interaction ID
document_version_id = db.Column(db.Integer, nullable=True)
prompt_tokens = db.Column(db.Integer, nullable=True)
completion_tokens = db.Column(db.Integer, nullable=True)
total_tokens = db.Column(db.Integer, nullable=True)
cost = db.Column(db.Float, nullable=True)
latency = db.Column(db.Float, nullable=True)
model_name = db.Column(db.String(50), nullable=False)
timestamp = db.Column(db.DateTime, nullable=False)
additional_info = db.Column(JSONB, nullable=True)
# Add any additional fields or methods as needed
event_type = db.Column(db.String(50), nullable=False)
tenant_id = db.Column(db.Integer, nullable=False)
trace_id = db.Column(db.String(50), nullable=False)
span_id = db.Column(db.String(50))
span_name = db.Column(db.String(50))
parent_span_id = db.Column(db.String(50))
document_version_id = db.Column(db.Integer)
chat_session_id = db.Column(db.Integer)
interaction_id = db.Column(db.Integer)
environment = db.Column(db.String(20))
message = db.Column(db.Text)
# Add any other fields relevant for invoicing or warnings

View File

@@ -0,0 +1,109 @@
import os
import uuid
from contextlib import contextmanager
from datetime import datetime
from typing import Dict, Any, Optional
from datetime import datetime as dt, timezone as tz
from portkey_ai import Portkey, Config
import logging
from .business_event_context import BusinessEventContext
from common.models.monitoring import BusinessEventLog
from common.extensions import db
class BusinessEvent:
# The BusinessEvent class itself is a context manager, but it doesn't use the @contextmanager decorator.
# Instead, it defines __enter__ and __exit__ methods explicitly. This is because we're doing something a bit more
# complex - we're interacting with the BusinessEventContext and the _business_event_stack.
def __init__(self, event_type: str, tenant_id: int, **kwargs):
self.event_type = event_type
self.tenant_id = tenant_id
self.trace_id = str(uuid.uuid4())
self.span_id = None
self.span_name = None
self.parent_span_id = None
self.document_version_id = kwargs.get('document_version_id')
self.chat_session_id = kwargs.get('chat_session_id')
self.interaction_id = kwargs.get('interaction_id')
self.environment = os.environ.get("FLASK_ENV", "development")
self.span_counter = 0
self.spans = []
def update_attribute(self, attribute: str, value: any):
if hasattr(self, attribute):
setattr(self, attribute, value)
else:
raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{attribute}'")
@contextmanager
def create_span(self, span_name: str):
# The create_span method is designed to be used as a context manager. We want to perform some actions when
# entering the span (like setting the span ID and name) and some actions when exiting the span (like removing
# these temporary attributes). The @contextmanager decorator allows us to write this method in a way that
# clearly separates the "entry" and "exit" logic, with the yield statement in between.
parent_span_id = self.span_id
self.span_counter += 1
new_span_id = f"{self.trace_id}-{self.span_counter}"
# Save the current span info
self.spans.append((self.span_id, self.span_name, self.parent_span_id))
# Set the new span info
self.span_id = new_span_id
self.span_name = span_name
self.parent_span_id = parent_span_id
try:
yield
finally:
# Restore the previous span info
if self.spans:
self.span_id, self.span_name, self.parent_span_id = self.spans.pop()
else:
self.span_id = None
self.span_name = None
self.parent_span_id = None
def log(self, message: str, level: str = 'info'):
logger = logging.getLogger('business_events')
log_data = {
'event_type': self.event_type,
'tenant_id': self.tenant_id,
'trace_id': self.trace_id,
'span_id': self.span_id,
'span_name': self.span_name,
'parent_span_id': self.parent_span_id,
'document_version_id': self.document_version_id,
'chat_session_id': self.chat_session_id,
'interaction_id': self.interaction_id,
'environment': self.environment
}
# log to Graylog
getattr(logger, level)(message, extra=log_data)
# Log to database
event_log = BusinessEventLog(
timestamp=dt.now(tz=tz.utc),
event_type=self.event_type,
tenant_id=self.tenant_id,
trace_id=self.trace_id,
span_id=self.span_id,
span_name=self.span_name,
parent_span_id=self.parent_span_id,
document_version_id=self.document_version_id,
chat_session_id=self.chat_session_id,
interaction_id=self.interaction_id,
environment=self.environment,
message=message
)
db.session.add(event_log)
db.session.commit()
def __enter__(self):
return BusinessEventContext(self).__enter__()
def __exit__(self, exc_type, exc_val, exc_tb):
return BusinessEventContext(self).__exit__(exc_type, exc_val, exc_tb)

View File

@@ -0,0 +1,25 @@
from werkzeug.local import LocalProxy, LocalStack
_business_event_stack = LocalStack()
def _get_current_event():
top = _business_event_stack.top
if top is None:
raise RuntimeError("No business event context found. Are you sure you're in a business event?")
return top
current_event = LocalProxy(_get_current_event)
class BusinessEventContext:
def __init__(self, event):
self.event = event
def __enter__(self):
_business_event_stack.push(self.event)
return self.event
def __exit__(self, exc_type, exc_val, exc_tb):
_business_event_stack.pop()

View File

@@ -12,7 +12,12 @@ env = os.environ.get('FLASK_ENV', 'development')
class CustomLogRecord(logging.LogRecord):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.component = os.environ.get('COMPONENT_NAME', 'eveai_app') # Set default component value here
self.component = os.environ.get('COMPONENT_NAME', 'eveai_app')
def __setattr__(self, name, value):
if name not in {'event_type', 'tenant_id', 'trace_id', 'span_id', 'span_name', 'parent_span_id',
'document_version_id', 'chat_session_id', 'interaction_id', 'environment'}:
super().__setattr__(name, value)
def custom_log_record_factory(*args, **kwargs):
@@ -108,6 +113,14 @@ LOGGING = {
'backupCount': 10,
'formatter': 'standard',
},
'file_business_events': {
'level': 'INFO',
'class': 'logging.handlers.RotatingFileHandler',
'filename': 'logs/business_events.log',
'maxBytes': 1024 * 1024 * 5, # 5MB
'backupCount': 10,
'formatter': 'standard',
},
'console': {
'class': 'logging.StreamHandler',
'level': 'DEBUG',
@@ -184,6 +197,11 @@ LOGGING = {
'level': 'DEBUG',
'propagate': False
},
'business_events': {
'handlers': ['file_business_events', 'graylog'],
'level': 'DEBUG',
'propagate': False
},
'': { # root logger
'handlers': ['console'],
'level': 'WARNING', # Set higher level for root to minimize noise

View File

@@ -5,6 +5,7 @@ from langchain_core.runnables import RunnablePassthrough
from common.extensions import db, minio_client
from common.utils.model_utils import create_language_template
from .processor import Processor
from common.utils.business_event_context import current_event
class HTMLProcessor(Processor):

View File

@@ -24,6 +24,9 @@ from eveai_workers.Processors.html_processor import HTMLProcessor
from eveai_workers.Processors.pdf_processor import PDFProcessor
from eveai_workers.Processors.srt_processor import SRTProcessor
from common.utils.business_event import BusinessEvent
from common.utils.business_event_context import current_event
# Healthcheck task
@current_celery.task(name='ping', queue='embeddings')
@@ -33,76 +36,80 @@ def ping():
@current_celery.task(name='create_embeddings', queue='embeddings')
def create_embeddings(tenant_id, document_version_id):
current_app.logger.info(f'Creating embeddings for tenant {tenant_id} on document version {document_version_id}.')
# BusinessEvent creates a context, which is why we need to use it with a with block
with BusinessEvent('Create Embeddings', tenant_id, document_version_id=document_version_id):
current_app.logger.info(f'Creating embeddings for tenant {tenant_id} on document version {document_version_id}')
current_event.log("Starting Embedding Creation Task")
try:
# Retrieve Tenant for which we are processing
tenant = Tenant.query.get(tenant_id)
if tenant is None:
raise Exception(f'Tenant {tenant_id} not found')
try:
# Retrieve Tenant for which we are processing
tenant = Tenant.query.get(tenant_id)
if tenant is None:
raise Exception(f'Tenant {tenant_id} not found')
# Ensure we are working in the correct database schema
Database(tenant_id).switch_schema()
# Ensure we are working in the correct database schema
Database(tenant_id).switch_schema()
# Select variables to work with depending on tenant and model
model_variables = select_model_variables(tenant)
current_app.logger.debug(f'Model variables: {model_variables}')
# Select variables to work with depending on tenant and model
model_variables = select_model_variables(tenant)
current_app.logger.debug(f'Model variables: {model_variables}')
# Retrieve document version to process
document_version = DocumentVersion.query.get(document_version_id)
if document_version is None:
raise Exception(f'Document version {document_version_id} not found')
# Retrieve document version to process
document_version = DocumentVersion.query.get(document_version_id)
if document_version is None:
raise Exception(f'Document version {document_version_id} not found')
except Exception as e:
current_app.logger.error(f'Create Embeddings request received '
f'for non existing document version {document_version_id} '
f'for tenant {tenant_id}, '
f'error: {e}')
raise
except Exception as e:
current_app.logger.error(f'Create Embeddings request received '
f'for non existing document version {document_version_id} '
f'for tenant {tenant_id}, '
f'error: {e}')
raise
try:
db.session.add(document_version)
try:
db.session.add(document_version)
# start processing
document_version.processing = True
document_version.processing_started_at = dt.now(tz.utc)
document_version.processing_finished_at = None
document_version.processing_error = None
# start processing
document_version.processing = True
document_version.processing_started_at = dt.now(tz.utc)
document_version.processing_finished_at = None
document_version.processing_error = None
db.session.commit()
except SQLAlchemyError as e:
current_app.logger.error(f'Unable to save Embedding status information '
f'in document version {document_version_id} '
f'for tenant {tenant_id}')
raise
db.session.commit()
except SQLAlchemyError as e:
current_app.logger.error(f'Unable to save Embedding status information '
f'in document version {document_version_id} '
f'for tenant {tenant_id}')
raise
delete_embeddings_for_document_version(document_version)
delete_embeddings_for_document_version(document_version)
try:
match document_version.file_type:
case 'pdf':
process_pdf(tenant, model_variables, document_version)
case 'html':
process_html(tenant, model_variables, document_version)
case 'srt':
process_srt(tenant, model_variables, document_version)
case 'mp4' | 'mp3' | 'ogg':
process_audio(tenant, model_variables, document_version)
case _:
raise Exception(f'No functionality defined for file type {document_version.file_type} '
f'for tenant {tenant_id} '
f'while creating embeddings for document version {document_version_id}')
try:
match document_version.file_type:
case 'pdf':
process_pdf(tenant, model_variables, document_version)
case 'html':
process_html(tenant, model_variables, document_version)
case 'srt':
process_srt(tenant, model_variables, document_version)
case 'mp4' | 'mp3' | 'ogg':
process_audio(tenant, model_variables, document_version)
case _:
raise Exception(f'No functionality defined for file type {document_version.file_type} '
f'for tenant {tenant_id} '
f'while creating embeddings for document version {document_version_id}')
current_event.log("Finished Embedding Creation Task")
except Exception as e:
current_app.logger.error(f'Error creating embeddings for tenant {tenant_id} '
f'on document version {document_version_id} '
f'error: {e}')
document_version.processing = False
document_version.processing_finished_at = dt.now(tz.utc)
document_version.processing_error = str(e)[:255]
db.session.commit()
create_embeddings.update_state(state=states.FAILURE)
raise
except Exception as e:
current_app.logger.error(f'Error creating embeddings for tenant {tenant_id} '
f'on document version {document_version_id} '
f'error: {e}')
document_version.processing = False
document_version.processing_finished_at = dt.now(tz.utc)
document_version.processing_error = str(e)[:255]
db.session.commit()
create_embeddings.update_state(state=states.FAILURE)
raise
def delete_embeddings_for_document_version(document_version):
@@ -118,38 +125,48 @@ def delete_embeddings_for_document_version(document_version):
def process_pdf(tenant, model_variables, document_version):
current_event.log("Starting PDF Processing")
processor = PDFProcessor(tenant, model_variables, document_version)
markdown, title = processor.process()
# Process markdown and embed
embed_markdown(tenant, model_variables, document_version, markdown, title)
current_event.log("Finished PDF Processing")
def process_html(tenant, model_variables, document_version):
processor = HTMLProcessor(tenant, model_variables, document_version)
markdown, title = processor.process()
with current_event.create_span("HTML Processing"):
processor = HTMLProcessor(tenant, model_variables, document_version)
markdown, title = processor.process()
# Process markdown and embed
embed_markdown(tenant, model_variables, document_version, markdown, title)
with current_event.create_span("Embedding"):
embed_markdown(tenant, model_variables, document_version, markdown, title)
def process_audio(tenant, model_variables, document_version):
current_event.log("Starting Audio Processing")
processor = AudioProcessor(tenant, model_variables, document_version)
markdown, title = processor.process()
# Process markdown and embed
embed_markdown(tenant, model_variables, document_version, markdown, title)
current_event.log("Finished Audio Processing")
def process_srt(tenant, model_variables, document_version):
current_event.log("Starting SRT Processing")
processor = SRTProcessor(tenant, model_variables, document_version)
markdown, title = processor.process()
# Process markdown and embed
embed_markdown(tenant, model_variables, document_version, markdown, title)
current_event.log("Finished SRT Processing")
def embed_markdown(tenant, model_variables, document_version, markdown, title):
current_event.log("Starting Embedding Markdown Processing")
# Create potential chunks
potential_chunks = create_potential_chunks_for_markdown(tenant.id, document_version, f"{document_version.id}.md")
@@ -178,9 +195,11 @@ def embed_markdown(tenant, model_variables, document_version, markdown, title):
current_app.logger.info(f'Embeddings created successfully for tenant {tenant.id} '
f'on document version {document_version.id} :-)')
current_event.log("Finished Embedding Markdown Processing")
def enrich_chunks(tenant, model_variables, document_version, title, chunks):
current_event.log("Starting Enriching Chunks Processing")
current_app.logger.debug(f'Enriching chunks for tenant {tenant.id} '
f'on document version {document_version.id}')
@@ -213,11 +232,13 @@ def enrich_chunks(tenant, model_variables, document_version, title, chunks):
current_app.logger.debug(f'Finished enriching chunks for tenant {tenant.id} '
f'on document version {document_version.id}')
current_event.log("Finished Enriching Chunks Processing")
return enriched_chunks
def summarize_chunk(tenant, model_variables, document_version, chunk):
current_event.log("Starting Summarizing Chunk Processing")
current_app.logger.debug(f'Summarizing chunk for tenant {tenant.id} '
f'on document version {document_version.id}')
llm = model_variables['llm']
@@ -235,6 +256,7 @@ def summarize_chunk(tenant, model_variables, document_version, chunk):
summary = chain.invoke({"text": chunk})
current_app.logger.debug(f'Finished summarizing chunk for tenant {tenant.id} '
f'on document version {document_version.id}.')
current_event.log("Finished summarizing chunk for tenant ")
return summary
except LangChainException as e:
current_app.logger.error(f'Error creating summary for chunk enrichment for tenant {tenant.id} '
@@ -244,6 +266,7 @@ def summarize_chunk(tenant, model_variables, document_version, chunk):
def embed_chunks(tenant, model_variables, document_version, chunks):
current_event.log("Starting Embedding Chunks Processing")
current_app.logger.debug(f'Embedding chunks for tenant {tenant.id} '
f'on document version {document_version.id}')
embedding_model = model_variables['embedding_model']
@@ -268,6 +291,8 @@ def embed_chunks(tenant, model_variables, document_version, chunks):
new_embedding.embedding = embedding
new_embeddings.append(new_embedding)
current_app.logger.debug(f'Finished embedding chunks for tenant {tenant.id} ')
return new_embeddings
@@ -281,244 +306,6 @@ def log_parsing_info(tenant, tags, included_elements, excluded_elements, exclude
current_app.embed_tuning_logger.debug(f'First element to parse: {elements_to_parse[0]}')
# def process_youtube(tenant, model_variables, document_version):
# download_file_name = f'{document_version.id}.mp4'
# compressed_file_name = f'{document_version.id}.mp3'
# transcription_file_name = f'{document_version.id}.txt'
# markdown_file_name = f'{document_version.id}.md'
#
# # Remove existing files (in case of a re-processing of the file
# minio_client.delete_document_file(tenant.id, document_version.doc_id, document_version.language,
# document_version.id, download_file_name)
# minio_client.delete_document_file(tenant.id, document_version.doc_id, document_version.language,
# document_version.id, compressed_file_name)
# minio_client.delete_document_file(tenant.id, document_version.doc_id, document_version.language,
# document_version.id, transcription_file_name)
# minio_client.delete_document_file(tenant.id, document_version.doc_id, document_version.language,
# document_version.id, markdown_file_name)
#
# of, title, description, author = download_youtube(document_version.url, tenant.id, document_version,
# download_file_name)
# document_version.system_context = f'Title: {title}\nDescription: {description}\nAuthor: {author}'
# compress_audio(tenant.id, document_version, download_file_name, compressed_file_name)
# transcribe_audio(tenant.id, document_version, compressed_file_name, transcription_file_name, model_variables)
# annotate_transcription(tenant, document_version, transcription_file_name, markdown_file_name, model_variables)
#
# potential_chunks = create_potential_chunks_for_markdown(tenant.id, document_version, markdown_file_name)
# actual_chunks = combine_chunks_for_markdown(potential_chunks, model_variables['min_chunk_size'],
# model_variables['max_chunk_size'])
#
# enriched_chunks = enrich_chunks(tenant, document_version, actual_chunks)
# embeddings = embed_chunks(tenant, model_variables, document_version, enriched_chunks)
#
# try:
# db.session.add(document_version)
# document_version.processing_finished_at = dt.now(tz.utc)
# document_version.processing = False
# db.session.add_all(embeddings)
# db.session.commit()
# except SQLAlchemyError as e:
# current_app.logger.error(f'Error saving embedding information for tenant {tenant.id} '
# f'on Youtube document version {document_version.id}'
# f'error: {e}')
# raise
#
# current_app.logger.info(f'Embeddings created successfully for tenant {tenant.id} '
# f'on Youtube document version {document_version.id} :-)')
#
#
# def download_youtube(url, tenant_id, document_version, file_name):
# try:
# current_app.logger.info(f'Downloading YouTube video: {url} for tenant: {tenant_id}')
# yt = YouTube(url)
# stream = yt.streams.get_audio_only()
#
# with tempfile.NamedTemporaryFile(delete=False) as temp_file:
# stream.download(output_path=temp_file.name)
# with open(temp_file.name, 'rb') as f:
# file_data = f.read()
#
# minio_client.upload_document_file(tenant_id, document_version.doc_id, document_version.language,
# document_version.id,
# file_name, file_data)
#
# current_app.logger.info(f'Downloaded YouTube video: {url} for tenant: {tenant_id}')
# return file_name, yt.title, yt.description, yt.author
# except Exception as e:
# current_app.logger.error(f'Error downloading YouTube video: {url} for tenant: {tenant_id} with error: {e}')
# raise
#
#
# def compress_audio(tenant_id, document_version, input_file, output_file):
# try:
# current_app.logger.info(f'Compressing audio for tenant: {tenant_id}')
#
# input_data = minio_client.download_document_file(tenant_id, document_version.doc_id, document_version.language,
# document_version.id, input_file)
#
# with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_input:
# temp_input.write(input_data)
# temp_input.flush()
#
# with tempfile.NamedTemporaryFile(delete=False, suffix='.mp3') as temp_output:
# result = subprocess.run(
# ['ffmpeg', '-i', temp_input.name, '-b:a', '64k', '-f', 'mp3', temp_output.name],
# capture_output=True,
# text=True
# )
#
# if result.returncode != 0:
# raise Exception(f"Compression failed: {result.stderr}")
#
# with open(temp_output.name, 'rb') as f:
# compressed_data = f.read()
#
# minio_client.upload_document_file(tenant_id, document_version.doc_id, document_version.language,
# document_version.id,
# output_file, compressed_data)
#
# current_app.logger.info(f'Compressed audio for tenant: {tenant_id}')
# except Exception as e:
# current_app.logger.error(f'Error compressing audio for tenant: {tenant_id} with error: {e}')
# raise
#
#
# def transcribe_audio(tenant_id, document_version, input_file, output_file, model_variables):
# try:
# current_app.logger.info(f'Transcribing audio for tenant: {tenant_id}')
# client = model_variables['transcription_client']
# model = model_variables['transcription_model']
#
# # Download the audio file from MinIO
# audio_data = minio_client.download_document_file(tenant_id, document_version.doc_id, document_version.language,
# document_version.id, input_file)
#
# # Load the audio data into pydub
# audio = AudioSegment.from_mp3(io.BytesIO(audio_data))
#
# # Define segment length (e.g., 10 minutes)
# segment_length = 10 * 60 * 1000 # 10 minutes in milliseconds
#
# transcriptions = []
#
# # Split audio into segments and transcribe each
# for i, chunk in enumerate(audio[::segment_length]):
# current_app.logger.debug(f'Transcribing chunk {i + 1} of {len(audio) // segment_length + 1}')
#
# with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_audio:
# chunk.export(temp_audio.name, format="mp3")
#
# with open(temp_audio.name, 'rb') as audio_segment:
# transcription = client.audio.transcriptions.create(
# file=audio_segment,
# model=model,
# language=document_version.language,
# response_format='verbose_json',
# )
#
# transcriptions.append(transcription.text)
#
# os.unlink(temp_audio.name) # Delete the temporary file
#
# # Combine all transcriptions
# full_transcription = " ".join(transcriptions)
#
# # Upload the full transcription to MinIO
# minio_client.upload_document_file(
# tenant_id,
# document_version.doc_id,
# document_version.language,
# document_version.id,
# output_file,
# full_transcription.encode('utf-8')
# )
#
# current_app.logger.info(f'Transcribed audio for tenant: {tenant_id}')
# except Exception as e:
# current_app.logger.error(f'Error transcribing audio for tenant: {tenant_id}, with error: {e}')
# raise
#
#
# def annotate_transcription(tenant, document_version, input_file, output_file, model_variables):
# try:
# current_app.logger.debug(f'Annotating transcription for tenant {tenant.id}')
#
# char_splitter = CharacterTextSplitter(separator='.',
# chunk_size=model_variables['annotation_chunk_length'],
# chunk_overlap=0)
#
# headers_to_split_on = [
# ("#", "Header 1"),
# ("##", "Header 2"),
# ]
# markdown_splitter = MarkdownHeaderTextSplitter(headers_to_split_on, strip_headers=False)
#
# llm = model_variables['llm']
# template = model_variables['transcript_template']
# language_template = create_language_template(template, document_version.language)
# transcript_prompt = ChatPromptTemplate.from_template(language_template)
# setup = RunnablePassthrough()
# output_parser = StrOutputParser()
#
# # Download the transcription file from MinIO
# transcript_data = minio_client.download_document_file(tenant.id, document_version.doc_id,
# document_version.language, document_version.id,
# input_file)
# transcript = transcript_data.decode('utf-8')
#
# chain = setup | transcript_prompt | llm | output_parser
#
# chunks = char_splitter.split_text(transcript)
# all_markdown_chunks = []
# last_markdown_chunk = ''
# for chunk in chunks:
# current_app.logger.debug(f'Annotating next chunk of {len(chunks)} for tenant {tenant.id}')
# full_input = last_markdown_chunk + '\n' + chunk
# if tenant.embed_tuning:
# current_app.embed_tuning_logger.debug(f'Annotating chunk: \n '
# f'------------------\n'
# f'{full_input}\n'
# f'------------------\n')
# input_transcript = {'transcript': full_input}
# markdown = chain.invoke(input_transcript)
# # GPT-4o returns some kind of content description: ```markdown <text> ```
# if markdown.startswith("```markdown"):
# markdown = "\n".join(markdown.strip().split("\n")[1:-1])
# if tenant.embed_tuning:
# current_app.embed_tuning_logger.debug(f'Markdown Received: \n '
# f'------------------\n'
# f'{markdown}\n'
# f'------------------\n')
# md_header_splits = markdown_splitter.split_text(markdown)
# markdown_chunks = [doc.page_content for doc in md_header_splits]
# # claude-3.5-sonnet returns introductory text
# if not markdown_chunks[0].startswith('#'):
# markdown_chunks.pop(0)
# last_markdown_chunk = markdown_chunks[-1]
# last_markdown_chunk = "\n".join(markdown.strip().split("\n")[1:])
# markdown_chunks.pop()
# all_markdown_chunks += markdown_chunks
#
# all_markdown_chunks += [last_markdown_chunk]
#
# annotated_transcript = '\n'.join(all_markdown_chunks)
#
# # Upload the annotated transcript to MinIO
# minio_client.upload_document_file(
# tenant.id,
# document_version.doc_id,
# document_version.language,
# document_version.id,
# output_file,
# annotated_transcript.encode('utf-8')
# )
#
# current_app.logger.info(f'Annotated transcription for tenant {tenant.id}')
# except Exception as e:
# current_app.logger.error(f'Error annotating transcription for tenant {tenant.id}, with error: {e}')
# raise
def create_potential_chunks_for_markdown(tenant_id, document_version, input_file):
try:
current_app.logger.info(f'Creating potential chunks for tenant {tenant_id}')

View File

@@ -0,0 +1,49 @@
"""Corrected BusinessEventLog
Revision ID: 2cbdb23ae02e
Revises: e3c6ff8c22df
Create Date: 2024-09-25 10:17:40.154566
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = '2cbdb23ae02e'
down_revision = 'e3c6ff8c22df'
branch_labels = None
depends_on = None
def upgrade():
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table('business_event_log', schema=None) as batch_op:
batch_op.alter_column('span_id',
existing_type=sa.VARCHAR(length=50),
nullable=True)
batch_op.alter_column('span_name',
existing_type=sa.VARCHAR(length=50),
nullable=True)
batch_op.alter_column('parent_span_id',
existing_type=sa.VARCHAR(length=50),
nullable=True)
# ### end Alembic commands ###
def downgrade():
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table('business_event_log', schema=None) as batch_op:
batch_op.alter_column('parent_span_id',
existing_type=sa.VARCHAR(length=50),
nullable=False)
batch_op.alter_column('span_name',
existing_type=sa.VARCHAR(length=50),
nullable=False)
batch_op.alter_column('span_id',
existing_type=sa.VARCHAR(length=50),
nullable=False)
# ### end Alembic commands ###

View File

@@ -0,0 +1,67 @@
"""Updated Monitoring Setup
Revision ID: e3c6ff8c22df
Revises: 25588210dab2
Create Date: 2024-09-25 10:05:57.684506
"""
from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
# revision identifiers, used by Alembic.
revision = 'e3c6ff8c22df'
down_revision = '25588210dab2'
branch_labels = None
depends_on = None
def upgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.create_table('business_event_log',
sa.Column('id', sa.Integer(), nullable=False),
sa.Column('timestamp', sa.DateTime(), nullable=False),
sa.Column('event_type', sa.String(length=50), nullable=False),
sa.Column('tenant_id', sa.Integer(), nullable=False),
sa.Column('trace_id', sa.String(length=50), nullable=False),
sa.Column('span_id', sa.String(length=50), nullable=False),
sa.Column('span_name', sa.String(length=50), nullable=False),
sa.Column('parent_span_id', sa.String(length=50), nullable=False),
sa.Column('document_version_id', sa.Integer(), nullable=True),
sa.Column('chat_session_id', sa.Integer(), nullable=True),
sa.Column('interaction_id', sa.Integer(), nullable=True),
sa.Column('environment', sa.String(length=20), nullable=True),
sa.Column('message', sa.Text(), nullable=True),
sa.PrimaryKeyConstraint('id'),
schema='public'
)
op.drop_table('llm_usage_metric')
# ### end Alembic commands ###
def downgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.create_table('llm_usage_metric',
sa.Column('id', sa.INTEGER(), autoincrement=True, nullable=False),
sa.Column('tenant_id', sa.INTEGER(), autoincrement=False, nullable=False),
sa.Column('environment', sa.VARCHAR(length=20), autoincrement=False, nullable=False),
sa.Column('activity', sa.VARCHAR(length=20), autoincrement=False, nullable=False),
sa.Column('sub_activity', sa.VARCHAR(length=20), autoincrement=False, nullable=False),
sa.Column('activity_detail', sa.VARCHAR(length=50), autoincrement=False, nullable=True),
sa.Column('session_id', sa.VARCHAR(length=50), autoincrement=False, nullable=True),
sa.Column('interaction_id', sa.INTEGER(), autoincrement=False, nullable=True),
sa.Column('document_version_id', sa.INTEGER(), autoincrement=False, nullable=True),
sa.Column('prompt_tokens', sa.INTEGER(), autoincrement=False, nullable=True),
sa.Column('completion_tokens', sa.INTEGER(), autoincrement=False, nullable=True),
sa.Column('total_tokens', sa.INTEGER(), autoincrement=False, nullable=True),
sa.Column('cost', sa.DOUBLE_PRECISION(precision=53), autoincrement=False, nullable=True),
sa.Column('latency', sa.DOUBLE_PRECISION(precision=53), autoincrement=False, nullable=True),
sa.Column('model_name', sa.VARCHAR(length=50), autoincrement=False, nullable=False),
sa.Column('timestamp', postgresql.TIMESTAMP(), autoincrement=False, nullable=False),
sa.Column('additional_info', postgresql.JSONB(astext_type=sa.Text()), autoincrement=False, nullable=True),
sa.PrimaryKeyConstraint('id', name='llm_usage_metric_pkey')
)
op.drop_table('business_event_log', schema='public')
# ### end Alembic commands ###