Files
eveAI/common/langchain/EveAIRetriever.py

51 lines
2.1 KiB
Python

from langchain_core.retrievers import BaseRetriever
from sqlalchemy.exc import SQLAlchemyError
from pydantic import BaseModel, Field
from typing import Any, Dict
from common.extensions import db
from flask import current_app
from config.logging_config import LOGGING
class EveAIRetriever(BaseRetriever):
model_variables: Dict[str, Any] = Field(...)
def __init__(self, model_variables: Dict[str, Any]):
super().__init__()
current_app.logger.debug('Initializing EveAIRetriever')
self.model_variables = model_variables
current_app.logger.debug('EveAIRetriever initialized')
def _get_relevant_documents(self, query: str):
current_app.logger.debug(f'Retrieving relevant documents for query: {query}')
query_embedding = self._get_query_embedding(query)
db_class = self.model_variables['embedding_db_model']
similarity_threshold = self.model_variables['similarity_threshold']
k = self.model_variables['k']
try:
res = (
db.session.query(db_class,
db_class.embedding.cosine_distance(query_embedding)
.label('distance'))
.filter(db_class.embedding.cosine_distance(query_embedding) < similarity_threshold)
.order_by('distance')
.limit(k)
.all()
)
current_app.rag_tuning_logger.debug(f'Retrieved {len(res)} relevant documents')
current_app.rag_tuning_logger.debug(f'---------------------------------------')
for doc in res:
current_app.rag_tuning_logger.debug(f'Document ID: {doc[0].id} - Distance: {doc[1]}\n')
current_app.rag_tuning_logger.debug(f'Chunk: \n {doc[0].chunk}\n\n')
except SQLAlchemyError as e:
current_app.logger.error(f'Error retrieving relevant documents: {e}')
return []
return res
def _get_query_embedding(self, query: str):
embedding_model = self.model_variables['embedding_model']
query_embedding = embedding_model.embed_query(query)
return query_embedding