Files
eveAI/eveai_workers/tasks.py

422 lines
17 KiB
Python

import re
from datetime import datetime as dt, timezone as tz
from celery import states
from flask import current_app
# OpenAI imports
from langchain.text_splitter import MarkdownHeaderTextSplitter
from langchain_core.exceptions import LangChainException
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from sqlalchemy import or_
from sqlalchemy.exc import SQLAlchemyError
from common.extensions import db
from common.models.document import DocumentVersion, Embedding, Document, Processor, Catalog
from common.models.user import Tenant
from common.utils.celery_utils import current_celery
from common.utils.database import Database
from common.utils.model_utils import create_language_template, get_model_variables, get_embedding_model_and_class, \
get_embedding_llm
from common.utils.business_event import BusinessEvent
from common.utils.business_event_context import current_event
from config.type_defs.processor_types import PROCESSOR_TYPES
from eveai_workers.processors.processor_registry import ProcessorRegistry
from common.utils.eveai_exceptions import EveAIInvalidEmbeddingModel
from common.utils.config_field_types import json_to_pattern_list
# Healthcheck task
@current_celery.task(name='ping', queue='embeddings')
def ping():
return 'pong'
@current_celery.task(name='create_embeddings', queue='embeddings')
def create_embeddings(tenant_id, document_version_id):
document_version = None
try:
# Retrieve Tenant for which we are processing
tenant = Tenant.query.get(tenant_id)
if tenant is None:
raise Exception(f'Tenant {tenant_id} not found')
# Ensure we are working in the correct database schema
Database(tenant_id).switch_schema()
# Retrieve document version to process
document_version = DocumentVersion.query.get(document_version_id)
if document_version is None:
raise Exception(f'Document version {document_version_id} not found')
# Retrieve the Catalog ID
doc = Document.query.get_or_404(document_version.doc_id)
catalog_id = doc.catalog_id
catalog = Catalog.query.get_or_404(catalog_id)
# Select variables to work with depending on tenant and model
model_variables = get_model_variables(tenant_id)
# Define processor related information
processor_type, processor_class = ProcessorRegistry.get_processor_for_file_type(document_version.file_type)
processor = get_processor_for_document(catalog_id, document_version.file_type, document_version.sub_file_type)
except Exception as e:
current_app.logger.error(f'Create Embeddings request received '
f'for badly configured document version {document_version_id} '
f'for tenant {tenant_id}, '
f'error: {e}')
if document_version:
document_version.processing_error = str(e)
raise
# BusinessEvent creates a context, which is why we need to use it with a with block
with BusinessEvent('Create Embeddings', tenant_id,
document_version_id=document_version_id,
document_version_file_size=document_version.file_size):
current_app.logger.info(f'Creating embeddings for tenant {tenant_id} on document version {document_version_id}')
try:
db.session.add(document_version)
# start processing
document_version.processing = True
document_version.processing_started_at = dt.now(tz.utc)
document_version.processing_finished_at = None
document_version.processing_error = None
db.session.commit()
except SQLAlchemyError as e:
current_app.logger.error(f'Unable to save Embedding status information '
f'in document version {document_version_id} '
f'for tenant {tenant_id}')
raise
delete_embeddings_for_document_version(document_version)
try:
with current_event.create_span(f"{processor_type} Processing"):
document_processor = processor_class(
tenant=tenant,
model_variables=model_variables,
document_version=document_version,
catalog=catalog,
processor=processor
)
markdown, title = document_processor.process()
document_processor.log_tuning("Processor returned: ", {
'markdown': markdown,
'title': title
})
with current_event.create_span("Embedding"):
embed_markdown(tenant, model_variables, document_version, catalog, document_processor, markdown, title)
current_event.log("Finished Embedding Creation Task")
except Exception as e:
current_app.logger.error(f'Error creating embeddings for tenant {tenant_id} '
f'on document version {document_version_id} '
f'error: {e}')
document_version.processing = False
document_version.processing_finished_at = dt.now(tz.utc)
document_version.processing_error = str(e)[:255]
db.session.commit()
create_embeddings.update_state(state=states.FAILURE)
raise
def delete_embeddings_for_document_version(document_version):
embeddings_to_delete = db.session.query(Embedding).filter_by(doc_vers_id=document_version.id).all()
for embedding in embeddings_to_delete:
db.session.delete(embedding)
try:
db.session.commit()
current_app.logger.info(f'Deleted embeddings for document version {document_version.id}')
except SQLAlchemyError as e:
current_app.logger.error(f'Unable to delete embeddings for document version {document_version.id}')
raise
def embed_markdown(tenant, model_variables, document_version, catalog, processor, markdown, title):
# Create potential chunks
potential_chunks = create_potential_chunks_for_markdown(tenant.id, document_version, processor, markdown)
processor.log_tuning("Potential Chunks: ", {'potential chunks': potential_chunks})
# Combine chunks for embedding
chunks = combine_chunks_for_markdown(potential_chunks, catalog.min_chunk_size, catalog.max_chunk_size, processor)
processor.log_tuning("Chunks: ", {'chunks': chunks})
# Enrich chunks
with current_event.create_span("Enrich Chunks"):
enriched_chunks = enrich_chunks(tenant, model_variables, document_version, title, chunks)
processor.log_tuning("Enriched Chunks: ", {'enriched_chunks': enriched_chunks})
# Create embeddings
with current_event.create_span("Create Embeddings"):
embeddings = embed_chunks(tenant, catalog, document_version, enriched_chunks)
# Update document version and save embeddings
try:
db.session.add(document_version)
document_version.processing_finished_at = dt.now(tz.utc)
document_version.processing = False
db.session.add_all(embeddings)
db.session.commit()
except SQLAlchemyError as e:
current_app.logger.error(f'Error saving embedding information for tenant {tenant.id} '
f'on HTML, document version {document_version.id}'
f'error: {e}')
raise
current_app.logger.info(f'Embeddings created successfully for tenant {tenant.id} '
f'on document version {document_version.id} :-)')
def enrich_chunks(tenant, model_variables, document_version, title, chunks):
summary = ''
if len(chunks) > 1:
summary = summarize_chunk(tenant, model_variables, document_version, chunks[0])
chunk_total_context = (f'Filename: {document_version.object_name}\n'
f'User Context:\n{document_version.user_context}\n\n'
f'User Metadata:\n{document_version.user_metadata}\n\n'
f'Title: {title}\n'
f'Summary:\n{summary}\n'
f'System Context:\n{document_version.system_context}\n\n'
f'System Metadata:\n{document_version.system_metadata}\n\n'
)
enriched_chunks = []
initial_chunk = (f'Filename: {document_version.object_name}\n'
f'User Context:\n{document_version.user_context}\n\n'
f'User Metadata:\n{document_version.user_metadata}\n\n'
f'Title: {title}\n'
f'System Context:\n{document_version.system_context}\n\n'
f'System Metadata:\n{document_version.system_metadata}\n\n'
f'{chunks[0]}'
)
enriched_chunks.append(initial_chunk)
for chunk in chunks[1:]:
enriched_chunk = f'{chunk_total_context}\n{chunk}'
enriched_chunks.append(enriched_chunk)
return enriched_chunks
def summarize_chunk(tenant, model_variables, document_version, chunk):
current_event.log("Starting Summarizing Chunk")
llm = get_embedding_llm()
template = model_variables.get_template("summary")
language_template = create_language_template(template, document_version.language)
summary_prompt = ChatPromptTemplate.from_template(language_template)
setup = RunnablePassthrough()
output_parser = StrOutputParser()
chain = setup | summary_prompt | llm | output_parser
try:
summary = chain.invoke({"text": chunk})
current_event.log("Finished Summarizing Chunk")
return summary
except LangChainException as e:
current_app.logger.error(f'Error creating summary for chunk enrichment for tenant {tenant.id} '
f'on document version {document_version.id} '
f'error: {e}')
raise
def embed_chunks(tenant, catalog, document_version, chunks):
if catalog.embedding_model:
embedding_model, embedding_model_class = get_embedding_model_and_class(tenant.id, catalog.id,
catalog.embedding_model)
else:
raise EveAIInvalidEmbeddingModel(tenant.id, catalog.id)
# Actually embed
try:
embeddings = embedding_model.embed_documents(chunks)
except LangChainException as e:
current_app.logger.error(f'Error creating embeddings for tenant {tenant.id} '
f'on document version {document_version.id} while calling OpenAI API'
f'error: {e}')
raise
# Add embeddings to the database
new_embeddings = []
for chunk, embedding in zip(chunks, embeddings):
new_embedding = embedding_model_class()
new_embedding.document_version = document_version
new_embedding.active = True
new_embedding.chunk = chunk
new_embedding.embedding = embedding
new_embeddings.append(new_embedding)
return new_embeddings
def create_potential_chunks_for_markdown(tenant_id, document_version, processor, markdown):
try:
current_app.logger.info(f'Creating potential chunks for tenant {tenant_id}')
heading_level = processor.configuration.get('chunking_heading_level', 2)
headers_to_split_on = [
(f"{'#' * i}", f"Header {i}") for i in range(1, min(heading_level + 1, 7))
]
processor.log_tuning('Headers to split on', {'header list: ': headers_to_split_on})
markdown_splitter = MarkdownHeaderTextSplitter(headers_to_split_on, strip_headers=False)
md_header_splits = markdown_splitter.split_text(markdown)
potential_chunks = [doc.page_content for doc in md_header_splits]
return potential_chunks
except Exception as e:
current_app.logger.error(f'Error creating potential chunks for tenant {tenant_id}, with error: {e}')
raise
def combine_chunks_for_markdown(potential_chunks, min_chars, max_chars, processor):
actual_chunks = []
current_chunk = ""
current_length = 0
def matches_chunking_pattern(text, patterns):
if not patterns:
return False
# Get the first line of the text
first_line = text.split('\n', 1)[0].strip()
# Check if it's a header at appropriate level
header_match = re.match(r'^(#{1,6})\s+(.+)$', first_line)
if not header_match:
return False
# Get the heading level (number of #s)
header_level = len(header_match.group(1))
# Get the header text
header_text = header_match.group(2)
# Check if header matches any pattern
for pattern in patterns:
try:
processor.log_tuning('Pattern check: ', {
'pattern: ': pattern,
'text': header_text
})
if re.search(pattern, header_text, re.IGNORECASE):
return True
except Exception as e:
current_app.logger.warning(f"Invalid regex pattern '{pattern}': {str(e)}")
continue
return False
chunking_patterns = json_to_pattern_list(processor.configuration.get('chunking_patterns', ""))
processor.log_tuning(f'Chunking Patterns Extraction: ', {
'Full Configuration': processor.configuration,
'Chunking Patterns': chunking_patterns,
})
for chunk in potential_chunks:
chunk_length = len(chunk)
# Force new chunk if pattern matches
if chunking_patterns and matches_chunking_pattern(chunk, chunking_patterns):
if current_chunk and current_length >= min_chars:
actual_chunks.append(current_chunk)
current_chunk = chunk
current_length = chunk_length
continue
if current_length + chunk_length > max_chars:
if current_length >= min_chars:
actual_chunks.append(current_chunk)
current_chunk = chunk
current_length = chunk_length
else:
# If the combined chunk is still less than max_chars, keep adding
current_chunk += f'\n{chunk}'
current_length += chunk_length
else:
current_chunk += f'\n{chunk}'
current_length += chunk_length
# Handle the last chunk
if current_chunk and current_length >= 0:
actual_chunks.append(current_chunk)
return actual_chunks
def get_processor_for_document(catalog_id: int, file_type: str, sub_file_type: str = None) -> Processor:
"""
Get the appropriate processor for a document based on catalog_id, file_type and optional sub_file_type.
Args:
catalog_id: ID of the catalog
file_type: Type of file (e.g., 'pdf', 'html')
sub_file_type: Optional sub-type for specialized processing
Returns:
Processor instance
Raises:
ValueError: If no matching processor is found
"""
try:
# Start with base query for catalog
query = Processor.query.filter_by(catalog_id=catalog_id)
# Find processor type that handles this file type
matching_processor_type = None
for proc_type, config in PROCESSOR_TYPES.items():
supported_types = config['file_types']
if isinstance(supported_types, str):
supported_types = [t.strip() for t in supported_types.split(',')]
if file_type in supported_types:
matching_processor_type = proc_type
break
if not matching_processor_type:
raise ValueError(f"No processor type found for file type: {file_type}")
# Add processor type condition
query = query.filter_by(type=matching_processor_type)
# If sub_file_type is provided, add that condition
if sub_file_type:
query = query.filter_by(sub_file_type=sub_file_type)
else:
# If no sub_file_type, prefer processors without sub_file_type specification
query = query.filter(or_(Processor.sub_file_type.is_(None),
Processor.sub_file_type == ''))
# Get the first matching processor
processor = query.first()
if not processor:
if sub_file_type:
raise ValueError(
f"No processor found for catalog {catalog_id} of type {matching_processor_type}, "
f"file type {file_type}, sub-type {sub_file_type}"
)
else:
raise ValueError(
f"No processor found for catalog {catalog_id}, "
f"file type {file_type}"
)
return processor
except Exception as e:
current_app.logger.error(f"Error finding processor: {str(e)}")
raise