Files
eveAI/eveai_chat_workers/retrievers/base_retriever.py
Josako 509ee95d81 - Revisiting RAG_SPECIALIST
- Adapt Catalogs & Retrievers to use specific types, removing tagging_fields
- Adding CrewAI Implementation Guide
2025-07-08 15:54:16 +02:00

113 lines
4.1 KiB
Python

import importlib
import json
from abc import ABC, abstractmethod, abstractproperty
from typing import Dict, Any, List, Optional, Tuple
from flask import current_app
from sqlalchemy import func, or_, desc
from sqlalchemy.exc import SQLAlchemyError
from common.extensions import db, cache_manager
from common.models.document import Document, DocumentVersion, Catalog, Retriever
from common.utils.model_utils import get_embedding_model_and_class
from eveai_chat_workers.retrievers.retriever_typing import RetrieverResult, RetrieverArguments, RetrieverMetadata
from config.logging_config import TuningLogger
class BaseRetriever(ABC):
"""Base class for all retrievers"""
def __init__(self, tenant_id: int, retriever_id: int):
self.tenant_id = tenant_id
self.retriever_id = retriever_id
self.retriever = Retriever.query.get_or_404(retriever_id)
self.catalog_id = self.retriever.catalog_id
self.tuning = self.retriever.tuning
self.tuning_logger = None
self._setup_tuning_logger()
self.embedding_model, self.embedding_model_class = (
get_embedding_model_and_class(tenant_id=tenant_id, catalog_id=self.catalog_id))
@property
@abstractmethod
def type(self) -> str:
"""The type of the retriever"""
raise NotImplementedError
@abstractmethod
def type_version(self) -> str:
"""The type version of the retriever"""
raise NotImplementedError
def _setup_tuning_logger(self):
try:
self.tuning_logger = TuningLogger(
'tuning',
tenant_id=self.tenant_id,
retriever_id=self.retriever_id,
)
# Verify logger is working with a test message
if self.tuning:
self.tuning_logger.log_tuning('retriever', "Tuning logger initialized")
except Exception as e:
current_app.logger.error(f"Failed to setup tuning logger: {str(e)}")
raise
def _parse_metadata(self, metadata: Any) -> Dict[str, Any]:
"""
Parse metadata ensuring it's a dictionary
Args:
metadata: Input metadata which could be string, dict, or None
Returns:
Dict[str, Any]: Parsed metadata as dictionary
"""
if metadata is None:
return {}
if isinstance(metadata, dict):
return metadata
if isinstance(metadata, str):
try:
return json.loads(metadata)
except json.JSONDecodeError:
current_app.logger.warning(f"Failed to parse metadata JSON string: {metadata}")
return {}
current_app.logger.warning(f"Unexpected metadata type: {type(metadata)}")
return {}
def log_tuning(self, message: str, data: Dict[str, Any] = None) -> None:
if self.tuning and self.tuning_logger:
try:
self.tuning_logger.log_tuning('retriever', message, data)
except Exception as e:
current_app.logger.error(f"Processor: Error in tuning logging: {e}")
@abstractmethod
def retrieve(self, arguments: RetrieverArguments) -> List[RetrieverResult]:
"""
Retrieve relevant documents based on provided arguments
Args:
arguments: Dictionary of arguments for the retrieval operation
Returns:
List[Dict[str, Any]]: List of retrieved documents/content
"""
raise NotImplementedError
def get_retriever_class(retriever_type: str, type_version: str):
major_minor = '_'.join(type_version.split('.')[:2])
retriever_config = cache_manager.retrievers_config_cache.get_config(retriever_type, type_version)
partner = retriever_config.get("partner", None)
if partner:
module_path = f"eveai_chat_workers.retrievers.{partner}.{retriever_type}.{major_minor}"
else:
module_path = f"eveai_chat_workers.retrievers.globals.{retriever_type}.{major_minor}"
current_app.logger.debug(f"Importing retriever class from {module_path}")
module = importlib.import_module(module_path)
return module.RetrieverExecutor