Files
eveAI/common/models/document.py
Josako 9782e31ae5 - Refined entitlements to work with MiB for both embeddings and storage
- Improved DocumentVersion storage attributes to reflect Minio settings
- Added size to DocumentVersions to easily calculate usage
- License / LicenseTier forms and views added
2024-10-07 14:17:44 +02:00

117 lines
4.5 KiB
Python

from common.extensions import db
from .user import User, Tenant
from pgvector.sqlalchemy import Vector
from sqlalchemy.dialects.postgresql import JSONB
class Document(db.Model):
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.String(100), nullable=False)
tenant_id = db.Column(db.Integer, db.ForeignKey(Tenant.id), nullable=False)
valid_from = db.Column(db.DateTime, nullable=True)
valid_to = db.Column(db.DateTime, nullable=True)
# Versioning Information
created_at = db.Column(db.DateTime, nullable=False, server_default=db.func.now())
created_by = db.Column(db.Integer, db.ForeignKey(User.id), nullable=True)
updated_at = db.Column(db.DateTime, nullable=False, server_default=db.func.now(), onupdate=db.func.now())
updated_by = db.Column(db.Integer, db.ForeignKey(User.id))
# Relations
versions = db.relationship('DocumentVersion', backref='document', lazy=True)
def __repr__(self):
return f"<Document {self.id}: {self.name}>"
class DocumentVersion(db.Model):
id = db.Column(db.Integer, primary_key=True)
doc_id = db.Column(db.Integer, db.ForeignKey(Document.id), nullable=False)
url = db.Column(db.String(200), nullable=True)
bucket_name = db.Column(db.String(255), nullable=True)
object_name = db.Column(db.String(200), nullable=True)
file_type = db.Column(db.String(20), nullable=True)
file_size = db.Column(db.Float, nullable=True)
language = db.Column(db.String(2), nullable=False)
user_context = db.Column(db.Text, nullable=True)
system_context = db.Column(db.Text, nullable=True)
user_metadata = db.Column(JSONB, nullable=True)
system_metadata = db.Column(JSONB, nullable=True)
# Versioning Information
created_at = db.Column(db.DateTime, nullable=False, server_default=db.func.now())
created_by = db.Column(db.Integer, db.ForeignKey(User.id))
updated_at = db.Column(db.DateTime, nullable=False, server_default=db.func.now(), onupdate=db.func.now())
updated_by = db.Column(db.Integer, db.ForeignKey(User.id))
# Processing Information
processing = db.Column(db.Boolean, nullable=False, default=False)
processing_started_at = db.Column(db.DateTime, nullable=True)
processing_finished_at = db.Column(db.DateTime, nullable=True)
processing_error = db.Column(db.String(255), nullable=True)
# Relations
embeddings = db.relationship('Embedding', backref='document_version', lazy=True)
def __repr__(self):
return f"<DocumentVersion {self.document_language.document_id}.{self.document_language.language}>.{self.id}>"
def calc_file_location(self):
return f"{self.document.tenant_id}/{self.document.id}/{self.language}"
def calc_file_name(self):
return f"{self.id}.{self.file_type}"
class Embedding(db.Model):
__tablename__ = 'embeddings'
id = db.Column(db.Integer, primary_key=True)
type = db.Column(db.String(30), nullable=False)
doc_vers_id = db.Column(db.Integer, db.ForeignKey(DocumentVersion.id), nullable=False)
active = db.Column(db.Boolean, nullable=False, default=True)
chunk = db.Column(db.Text, nullable=False)
__mapper_args__ = {
'polymorphic_identity': 'embedding',
'polymorphic_on': type
}
class EmbeddingMistral(Embedding):
__tablename__ = 'embedding_mistral'
id = db.Column(db.Integer, db.ForeignKey('embeddings.id'), primary_key=True)
# 1024 is the MISTRAL Embedding dimension.
# If another embedding model is chosen, this dimension may need to be changed.
embedding = db.Column(Vector(1024), nullable=False)
__mapper_args__ = {
'polymorphic_identity': 'embedding_mistral',
}
class EmbeddingSmallOpenAI(Embedding):
__tablename__ = 'embedding_small_openai'
id = db.Column(db.Integer, db.ForeignKey('embeddings.id'), primary_key=True)
# 1536 is the OpenAI Small Embedding dimension.
# If another embedding model is chosen, this dimension may need to be changed.
embedding = db.Column(Vector(1536), nullable=False)
__mapper_args__ = {
'polymorphic_identity': 'embedding_small_openai',
}
class EmbeddingLargeOpenAI(Embedding):
__tablename__ = 'embedding_large_openai'
id = db.Column(db.Integer, db.ForeignKey('embeddings.id'), primary_key=True)
# 3072 is the OpenAI Large Embedding dimension.
# If another embedding model is chosen, this dimension may need to be changed.
embedding = db.Column(Vector(3072), nullable=False)
__mapper_args__ = {
'polymorphic_identity': 'embedding_large_openai',
}