176 lines
7.6 KiB
Python
176 lines
7.6 KiB
Python
from datetime import datetime as dt, timezone as tz
|
|
from flask import current_app
|
|
import os
|
|
|
|
# Unstructured commercial client imports
|
|
from unstructured_client import UnstructuredClient
|
|
from unstructured_client.models import shared
|
|
from unstructured_client.models.errors import SDKError
|
|
|
|
# OpenAI imports
|
|
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
|
from langchain_core.prompts import ChatPromptTemplate
|
|
from langchain.chains.summarize import load_summarize_chain
|
|
from langchain.text_splitter import CharacterTextSplitter
|
|
from langchain_core.exceptions import LangChainException
|
|
|
|
from common.utils.database import Database
|
|
from common.models.document import DocumentVersion, EmbeddingMistral, EmbeddingSmallOpenAI
|
|
from common.extensions import db
|
|
from common.utils.celery_utils import current_celery
|
|
|
|
|
|
@current_celery.task(name='create_embeddings', queue='embeddings')
|
|
def create_embeddings(tenant_id, document_version_id, default_embedding_model):
|
|
# Setup Remote Debugging only if PYCHARM_DEBUG=True
|
|
if current_app.config['PYCHARM_DEBUG']:
|
|
import pydevd_pycharm
|
|
pydevd_pycharm.settrace('localhost', port=50170, stdoutToServer=True, stderrToServer=True)
|
|
|
|
current_app.logger.info(f'Creating embeddings for tenant {tenant_id} on document version {document_version_id} '
|
|
f'with model {default_embedding_model}')
|
|
|
|
# Ensure we are working in the correct database schema
|
|
Database(tenant_id).switch_schema()
|
|
|
|
# Retrieve document version to process
|
|
document_version = DocumentVersion.query.get(document_version_id)
|
|
if document_version is None:
|
|
current_app.logger.error(f'Cannot create embeddings for tenant {tenant_id}. '
|
|
f'Document version {document_version_id} not found')
|
|
return
|
|
db.session.add(document_version)
|
|
|
|
# start processing
|
|
document_version.processing = True
|
|
document_version.processing_started_at = dt.now(tz.utc)
|
|
db.session.commit()
|
|
|
|
embed_provider = default_embedding_model.rsplit('.', 1)[0]
|
|
embed_model = default_embedding_model.rsplit('.', 1)[1]
|
|
# define embedding variables
|
|
match (embed_provider, embed_model):
|
|
case ('openai', 'text-embedding-3-small'):
|
|
embedding_function = embed_chunks_for_text_embedding_3_small
|
|
case ('mistral', 'mistral.mistral-embed'):
|
|
embedding_function = embed_chunks_for_mistral_embed
|
|
|
|
match document_version.file_type:
|
|
case 'pdf':
|
|
file_path = os.path.join(current_app.config['UPLOAD_FOLDER'],
|
|
document_version.file_location,
|
|
document_version.file_name)
|
|
if os.path.exists(file_path):
|
|
with open(file_path, 'rb') as f:
|
|
files = shared.Files(content=f.read(), file_name=document_version.file_name)
|
|
req = shared.PartitionParameters(
|
|
files=files,
|
|
strategy='hi_res',
|
|
hi_res_model_name='yolox',
|
|
coordinates=True,
|
|
extract_image_block_types=['Image', 'Table'],
|
|
chunking_strategy='by_title',
|
|
combine_under_n_chars=2000,
|
|
max_characters=3000,
|
|
)
|
|
try:
|
|
chunks = partition_doc_unstructured(tenant_id, document_version, req)
|
|
enriched_chunk_docs = enrich_chunks(tenant_id, document_version, chunks)
|
|
embedding_function(tenant_id, document_version, enriched_chunk_docs)
|
|
except Exception as e:
|
|
current_app.logger.error(f'Unable to create Embeddings for tenant {tenant_id} '
|
|
f'on document version {document_version.id} '
|
|
f'with model {default_embedding_model} '
|
|
f'error: {e}')
|
|
return
|
|
|
|
else: # file exists
|
|
current_app.logger.error(f'The physical file for document version {document_version_id} '
|
|
f'at {file_path} does not exist')
|
|
return
|
|
|
|
|
|
@current_celery.task(name='ask_eve_ai', queue='llm_interactions')
|
|
def ask_eve_ai(query):
|
|
# Interaction logic with LLMs like GPT (Langchain API calls, etc.)
|
|
pass
|
|
|
|
|
|
def enrich_chunks(tenant_id, document_version, chunks):
|
|
# We're adding filename and a summary of the first chunk to all the chunks to create global context
|
|
# using openAI to summarise
|
|
api_key = current_app.config.get('OPENAI_API_KEY')
|
|
# TODO: model selection to be adapted to model approach
|
|
llm = ChatOpenAI(api_key=api_key, temperature=0, model='gpt-4-turbo')
|
|
|
|
summary_template = current_app.config.get('GPT4_SUMMARY_TEMPLATE')
|
|
prompt = ChatPromptTemplate.from_template(summary_template)
|
|
|
|
chain = load_summarize_chain(llm, chain_type='stuff', prompt=prompt)
|
|
|
|
doc_creator = CharacterTextSplitter(chunk_size=9000, chunk_overlap=0)
|
|
text_to_summarize = doc_creator.create_documents(chunks[0]['text'])
|
|
try:
|
|
summary = chain.run(text_to_summarize)
|
|
chunk_global_context = f'Filename: {document_version.file_name}\nSummary:\n {summary}'
|
|
enriched_chunks = []
|
|
for chunk in chunks[1:]:
|
|
enriched_chunk_raw = f'{chunk_global_context}\n{chunk}'
|
|
enriched_chunk_doc = doc_creator.create_documents([enriched_chunk_raw])
|
|
enriched_chunks.append(enriched_chunk_doc)
|
|
|
|
return enriched_chunks
|
|
|
|
except LangChainException as e:
|
|
current_app.logger.error(f'Error creating summary for chunk enrichment for tenant {tenant_id} '
|
|
f'on document version {document_version.id} '
|
|
f'error: {e}')
|
|
raise
|
|
|
|
|
|
def partition_doc_unstructured(tenant_id, document_version, unstructured_request):
|
|
# Initiate the connection to unstructured.io
|
|
url = current_app.config.get('UNSTRUCTURED_FULL_URL')
|
|
api_key = current_app.config.get('UNSTRUCTURED_API_KEY')
|
|
unstructured_client = UnstructuredClient(server_url=url, api_key_auth=api_key)
|
|
|
|
try:
|
|
res = unstructured_client.general.partition(unstructured_request)
|
|
chunks = []
|
|
for el in res.elements:
|
|
match el['type']:
|
|
case 'Composite_element':
|
|
chunks.append(el['text'])
|
|
case 'Image':
|
|
pass
|
|
case 'Table':
|
|
chunks.append(el['metadata']['text_as_html'])
|
|
return chunks
|
|
except SDKError as e:
|
|
current_app.logger.error(f'Error creating embeddings for tenant {tenant_id} '
|
|
f'on document version {document_version.id} while chuncking'
|
|
f'error: {e}')
|
|
raise
|
|
|
|
|
|
def embed_chunks_for_text_embedding_3_small(tenant_id, document_version, chunks):
|
|
# Create embedding vectors using OpenAI
|
|
api_key = current_app.config.get('OPENAI_API_KEY')
|
|
embeddings_model = OpenAIEmbeddings(api_key=api_key, model='text-embedding-3-small')
|
|
try:
|
|
embeddings = embeddings_model.embed_documents(chunks)
|
|
except LangChainException as e:
|
|
current_app.logger.error(f'Error creating embeddings for tenant {tenant_id} '
|
|
f'on document version {document_version.id} while calling OpenAI API'
|
|
f'error: {e}')
|
|
raise
|
|
|
|
for chunk, embedding in zip(chunks, embeddings):
|
|
new_embedding = EmbeddingSmallOpenAI()
|
|
# TODO: continue here
|
|
return embeddings
|
|
|
|
|
|
def embed_chunks_for_mistral_embed(tenant_id, document_version, chunks):
|
|
pass
|