Files
eveAI/common/utils/business_event.py
Josako b700cfac64 - Improvements on audio processing to limit CPU and memory usage
- Removed Portkey from the equation, and defined explicit monitoring using Langchain native code
- Optimization of Business Event logging
2024-10-02 14:11:46 +02:00

240 lines
9.8 KiB
Python

import os
import uuid
from contextlib import contextmanager
from datetime import datetime
from typing import Dict, Any, Optional
from datetime import datetime as dt, timezone as tz
from portkey_ai import Portkey, Config
import logging
from .business_event_context import BusinessEventContext
from common.models.monitoring import BusinessEventLog
from common.extensions import db
class BusinessEvent:
# The BusinessEvent class itself is a context manager, but it doesn't use the @contextmanager decorator.
# Instead, it defines __enter__ and __exit__ methods explicitly. This is because we're doing something a bit more
# complex - we're interacting with the BusinessEventContext and the _business_event_stack.
def __init__(self, event_type: str, tenant_id: int, **kwargs):
self.event_type = event_type
self.tenant_id = tenant_id
self.trace_id = str(uuid.uuid4())
self.span_id = None
self.span_name = None
self.parent_span_id = None
self.document_version_id = kwargs.get('document_version_id')
self.chat_session_id = kwargs.get('chat_session_id')
self.interaction_id = kwargs.get('interaction_id')
self.environment = os.environ.get("FLASK_ENV", "development")
self.span_counter = 0
self.spans = []
self.llm_metrics = {
'total_tokens': 0,
'prompt_tokens': 0,
'completion_tokens': 0,
'total_time': 0,
'call_count': 0,
'interaction_type': None
}
def update_attribute(self, attribute: str, value: any):
if hasattr(self, attribute):
setattr(self, attribute, value)
else:
raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{attribute}'")
def update_llm_metrics(self, metrics: dict):
self.llm_metrics['total_tokens'] += metrics['total_tokens']
self.llm_metrics['prompt_tokens'] += metrics['prompt_tokens']
self.llm_metrics['completion_tokens'] += metrics['completion_tokens']
self.llm_metrics['total_time'] += metrics['time_elapsed']
self.llm_metrics['call_count'] += 1
self.llm_metrics['interaction_type'] = metrics['interaction_type']
def reset_llm_metrics(self):
self.llm_metrics['total_tokens'] = 0
self.llm_metrics['prompt_tokens'] = 0
self.llm_metrics['completion_tokens'] = 0
self.llm_metrics['total_time'] = 0
self.llm_metrics['call_count'] = 0
self.llm_metrics['interaction_type'] = None
@contextmanager
def create_span(self, span_name: str):
# The create_span method is designed to be used as a context manager. We want to perform some actions when
# entering the span (like setting the span ID and name) and some actions when exiting the span (like removing
# these temporary attributes). The @contextmanager decorator allows us to write this method in a way that
# clearly separates the "entry" and "exit" logic, with the yield statement in between.
parent_span_id = self.span_id
self.span_counter += 1
new_span_id = str(uuid.uuid4())
# Save the current span info
self.spans.append((self.span_id, self.span_name, self.parent_span_id))
# Set the new span info
self.span_id = new_span_id
self.span_name = span_name
self.parent_span_id = parent_span_id
self.log(f"Starting span {span_name}")
try:
yield
finally:
if self.llm_metrics['call_count'] > 0:
self.log_final_metrics()
self.reset_llm_metrics()
self.log(f"Ending span {span_name}")
# Restore the previous span info
if self.spans:
self.span_id, self.span_name, self.parent_span_id = self.spans.pop()
else:
self.span_id = None
self.span_name = None
self.parent_span_id = None
def log(self, message: str, level: str = 'info'):
logger = logging.getLogger('business_events')
log_data = {
'event_type': self.event_type,
'tenant_id': self.tenant_id,
'trace_id': self.trace_id,
'span_id': self.span_id,
'span_name': self.span_name,
'parent_span_id': self.parent_span_id,
'document_version_id': self.document_version_id,
'chat_session_id': self.chat_session_id,
'interaction_id': self.interaction_id,
'environment': self.environment,
}
# log to Graylog
getattr(logger, level)(message, extra=log_data)
# Log to database
event_log = BusinessEventLog(
timestamp=dt.now(tz=tz.utc),
event_type=self.event_type,
tenant_id=self.tenant_id,
trace_id=self.trace_id,
span_id=self.span_id,
span_name=self.span_name,
parent_span_id=self.parent_span_id,
document_version_id=self.document_version_id,
chat_session_id=self.chat_session_id,
interaction_id=self.interaction_id,
environment=self.environment,
message=message
)
db.session.add(event_log)
db.session.commit()
def log_llm_metrics(self, metrics: dict, level: str = 'info'):
self.update_llm_metrics(metrics)
message = "LLM Metrics"
logger = logging.getLogger('business_events')
log_data = {
'event_type': self.event_type,
'tenant_id': self.tenant_id,
'trace_id': self.trace_id,
'span_id': self.span_id,
'span_name': self.span_name,
'parent_span_id': self.parent_span_id,
'document_version_id': self.document_version_id,
'chat_session_id': self.chat_session_id,
'interaction_id': self.interaction_id,
'environment': self.environment,
'llm_metrics_total_tokens': metrics['total_tokens'],
'llm_metrics_prompt_tokens': metrics['prompt_tokens'],
'llm_metrics_completion_tokens': metrics['completion_tokens'],
'llm_metrics_total_time': metrics['time_elapsed'],
'llm_interaction_type': metrics['interaction_type'],
}
# log to Graylog
getattr(logger, level)(message, extra=log_data)
# Log to database
event_log = BusinessEventLog(
timestamp=dt.now(tz=tz.utc),
event_type=self.event_type,
tenant_id=self.tenant_id,
trace_id=self.trace_id,
span_id=self.span_id,
span_name=self.span_name,
parent_span_id=self.parent_span_id,
document_version_id=self.document_version_id,
chat_session_id=self.chat_session_id,
interaction_id=self.interaction_id,
environment=self.environment,
llm_metrics_total_tokens=metrics['total_tokens'],
llm_metrics_prompt_tokens=metrics['prompt_tokens'],
llm_metrics_completion_tokens=metrics['completion_tokens'],
llm_metrics_total_time=metrics['time_elapsed'],
llm_interaction_type=metrics['interaction_type'],
message=message
)
db.session.add(event_log)
db.session.commit()
def log_final_metrics(self, level: str = 'info'):
logger = logging.getLogger('business_events')
message = "Final LLM Metrics"
log_data = {
'event_type': self.event_type,
'tenant_id': self.tenant_id,
'trace_id': self.trace_id,
'span_id': self.span_id,
'span_name': self.span_name,
'parent_span_id': self.parent_span_id,
'document_version_id': self.document_version_id,
'chat_session_id': self.chat_session_id,
'interaction_id': self.interaction_id,
'environment': self.environment,
'llm_metrics_total_tokens': self.llm_metrics['total_tokens'],
'llm_metrics_prompt_tokens': self.llm_metrics['prompt_tokens'],
'llm_metrics_completion_tokens': self.llm_metrics['completion_tokens'],
'llm_metrics_total_time': self.llm_metrics['total_time'],
'llm_metrics_call_count': self.llm_metrics['call_count'],
'llm_interaction_type': self.llm_metrics['interaction_type'],
}
# log to Graylog
getattr(logger, level)(message, extra=log_data)
# Log to database
event_log = BusinessEventLog(
timestamp=dt.now(tz=tz.utc),
event_type=self.event_type,
tenant_id=self.tenant_id,
trace_id=self.trace_id,
span_id=self.span_id,
span_name=self.span_name,
parent_span_id=self.parent_span_id,
document_version_id=self.document_version_id,
chat_session_id=self.chat_session_id,
interaction_id=self.interaction_id,
environment=self.environment,
llm_metrics_total_tokens=self.llm_metrics['total_tokens'],
llm_metrics_prompt_tokens=self.llm_metrics['prompt_tokens'],
llm_metrics_completion_tokens=self.llm_metrics['completion_tokens'],
llm_metrics_total_time=self.llm_metrics['total_time'],
llm_metrics_call_count=self.llm_metrics['call_count'],
llm_interaction_type=self.llm_metrics['interaction_type'],
message=message
)
db.session.add(event_log)
db.session.commit()
def __enter__(self):
self.log(f'Starting Trace for {self.event_type}')
return BusinessEventContext(self).__enter__()
def __exit__(self, exc_type, exc_val, exc_tb):
if self.llm_metrics['call_count'] > 0:
self.log_final_metrics()
self.reset_llm_metrics()
self.log(f'Ending Trace for {self.event_type}')
return BusinessEventContext(self).__exit__(exc_type, exc_val, exc_tb)