Files
eveAI/eveai_chat_workers/retrievers/base.py
Josako cf2201a1f7 - Started addition of Assets (to e.g. handle document templates).
- To be continued (Models, first views are ready)
2025-03-17 17:40:42 +01:00

90 lines
3.3 KiB
Python

from abc import ABC, abstractmethod, abstractproperty
from typing import Dict, Any, List, Optional, Tuple
from flask import current_app
from sqlalchemy import func, or_, desc
from sqlalchemy.exc import SQLAlchemyError
from common.extensions import db
from common.models.document import Document, DocumentVersion, Catalog, Retriever
from common.utils.model_utils import get_embedding_model_and_class
from eveai_chat_workers.retrievers.retriever_typing import RetrieverResult, RetrieverArguments, RetrieverMetadata
from config.logging_config import TuningLogger
class BaseRetriever(ABC):
"""Base class for all retrievers"""
def __init__(self, tenant_id: int, retriever_id: int):
self.tenant_id = tenant_id
self.retriever_id = retriever_id
self.retriever = Retriever.query.get_or_404(retriever_id)
self.tuning = False
self.tuning_logger = None
self._setup_tuning_logger()
@property
@abstractmethod
def type(self) -> str:
"""The type of the retriever"""
pass
def _setup_tuning_logger(self):
try:
self.tuning_logger = TuningLogger(
'tuning',
tenant_id=self.tenant_id,
retriever_id=self.retriever_id,
)
# Verify logger is working with a test message
if self.tuning:
self.tuning_logger.log_tuning('retriever', "Tuning logger initialized")
except Exception as e:
current_app.logger.error(f"Failed to setup tuning logger: {str(e)}")
raise
def log_tuning(self, message: str, data: Dict[str, Any] = None) -> None:
if self.tuning and self.tuning_logger:
try:
self.tuning_logger.log_tuning('retriever', message, data)
except Exception as e:
current_app.logger.error(f"Processor: Error in tuning logging: {e}")
def setup_standard_retrieval_params(self) -> Tuple[Any, Any, Any, float, int]:
"""
Set up common parameters needed for standard retrieval functionality
Returns:
Tuple containing:
- embedding_model: The model to use for embeddings
- embedding_model_class: The class for storing embeddings
- catalog_id: ID of the catalog
- similarity_threshold: Threshold for similarity matching
- k: Maximum number of results to return
"""
catalog_id = self.retriever.catalog_id
catalog = Catalog.query.get_or_404(catalog_id)
embedding_model = "mistral.mistral-embed"
embedding_model, embedding_model_class = get_embedding_model_and_class(
self.tenant_id, catalog_id, embedding_model
)
similarity_threshold = self.retriever.configuration.get('es_similarity_threshold', 0.3)
k = self.retriever.configuration.get('es_k', 8)
return embedding_model, embedding_model_class, catalog_id, similarity_threshold, k
@abstractmethod
def retrieve(self, arguments: RetrieverArguments) -> List[RetrieverResult]:
"""
Retrieve relevant documents based on provided arguments
Args:
arguments: Dictionary of arguments for the retrieval operation
Returns:
List[Dict[str, Any]]: List of retrieved documents/content
"""
pass