166 lines
5.6 KiB
Python
166 lines
5.6 KiB
Python
import os
|
|
from typing import Dict, Any, Optional, Tuple
|
|
|
|
import langcodes
|
|
from langchain_core.language_models import BaseChatModel
|
|
|
|
from common.langchain.llm_metrics_handler import LLMMetricsHandler
|
|
from langchain_openai import ChatOpenAI
|
|
from langchain_mistralai import ChatMistralAI
|
|
from flask import current_app
|
|
|
|
from common.eveai_model.tracked_mistral_embeddings import TrackedMistralAIEmbeddings
|
|
from common.langchain.tracked_transcription import TrackedOpenAITranscription
|
|
from common.models.user import Tenant
|
|
from config.model_config import MODEL_CONFIG
|
|
from common.extensions import cache_manager
|
|
from common.models.document import EmbeddingMistral
|
|
from common.utils.eveai_exceptions import EveAITenantNotFound, EveAIInvalidEmbeddingModel
|
|
from crewai import LLM
|
|
|
|
embedding_llm_model_cache: Dict[Tuple[str, float], BaseChatModel] = {}
|
|
crewai_llm_model_cache: Dict[Tuple[str, float], LLM] = {}
|
|
llm_metrics_handler = LLMMetricsHandler()
|
|
|
|
|
|
def create_language_template(template: str, language: str) -> str:
|
|
"""
|
|
Replace language placeholder in template with specified language
|
|
|
|
Args:
|
|
template: Template string with {language} placeholder
|
|
language: Language code to insert
|
|
|
|
Returns:
|
|
str: Template with language placeholder replaced
|
|
"""
|
|
try:
|
|
full_language = langcodes.Language.make(language=language)
|
|
language_template = template.replace('{language}', full_language.display_name())
|
|
except ValueError:
|
|
language_template = template.replace('{language}', language)
|
|
|
|
return language_template
|
|
|
|
|
|
def replace_variable_in_template(template: str, variable: str, value: str) -> str:
|
|
"""
|
|
Replace a variable placeholder in template with specified value
|
|
|
|
Args:
|
|
template: Template string with variable placeholder
|
|
variable: Variable placeholder to replace (e.g. "{tenant_context}")
|
|
value: Value to insert
|
|
|
|
Returns:
|
|
str: Template with variable placeholder replaced
|
|
"""
|
|
|
|
modified_template = template.replace(f"{{{variable}}}", value or "")
|
|
return modified_template
|
|
|
|
|
|
def get_embedding_model_and_class(tenant_id, catalog_id, full_embedding_name="mistral.mistral-embed"):
|
|
"""
|
|
Retrieve the embedding model and embedding model class to store Embeddings
|
|
|
|
Args:
|
|
tenant_id: ID of the tenant
|
|
catalog_id: ID of the catalog
|
|
full_embedding_name: The full name of the embedding model: <provider>.<model>
|
|
|
|
Returns:
|
|
embedding_model, embedding_model_class
|
|
"""
|
|
embedding_provider, embedding_model_name = full_embedding_name.split('.')
|
|
|
|
# Calculate the embedding model to be used
|
|
if embedding_provider == "mistral":
|
|
api_key = current_app.config['MISTRAL_API_KEY']
|
|
embedding_model = TrackedMistralAIEmbeddings(
|
|
model=embedding_model_name
|
|
)
|
|
else:
|
|
raise EveAIInvalidEmbeddingModel(tenant_id, catalog_id)
|
|
|
|
# Calculate the Embedding Model Class to be used to store embeddings
|
|
if embedding_model_name == "mistral-embed":
|
|
embedding_model_class = EmbeddingMistral
|
|
else:
|
|
raise EveAIInvalidEmbeddingModel(tenant_id, catalog_id)
|
|
|
|
return embedding_model, embedding_model_class
|
|
|
|
|
|
def get_embedding_llm(full_model_name='mistral.mistral-small-latest', temperature=0.3):
|
|
llm = embedding_llm_model_cache.get((full_model_name, temperature))
|
|
if not llm:
|
|
llm_provider, llm_model_name = full_model_name.split('.')
|
|
if llm_provider == "openai":
|
|
llm = ChatOpenAI(
|
|
api_key=current_app.config['OPENAI_API_KEY'],
|
|
model=llm_model_name,
|
|
temperature=temperature,
|
|
callbacks=[llm_metrics_handler]
|
|
)
|
|
elif llm_provider == "mistral":
|
|
llm = ChatMistralAI(
|
|
api_key=current_app.config['MISTRAL_API_KEY'],
|
|
model=llm_model_name,
|
|
temperature=temperature,
|
|
callbacks=[llm_metrics_handler]
|
|
)
|
|
embedding_llm_model_cache[(full_model_name, temperature)] = llm
|
|
|
|
return llm
|
|
|
|
|
|
def get_crewai_llm(full_model_name='mistral.mistral-large-latest', temperature=0.3):
|
|
llm = crewai_llm_model_cache.get((full_model_name, temperature))
|
|
if not llm:
|
|
llm_provider, llm_model_name = full_model_name.split('.')
|
|
crew_full_model_name = f"{llm_provider}/{llm_model_name}"
|
|
api_key = None
|
|
if llm_provider == "openai":
|
|
api_key = current_app.config['OPENAI_API_KEY']
|
|
elif llm_provider == "mistral":
|
|
api_key = current_app.config['MISTRAL_API_KEY']
|
|
|
|
llm = LLM(
|
|
model=crew_full_model_name,
|
|
temperature=temperature,
|
|
api_key=api_key
|
|
)
|
|
crewai_llm_model_cache[(full_model_name, temperature)] = llm
|
|
|
|
return llm
|
|
|
|
|
|
def process_pdf():
|
|
full_model_name = 'mistral-ocr-latest'
|
|
|
|
|
|
def get_template(template_name: str, version: Optional[str] = "1.0", temperature: float = 0.3) -> tuple[
|
|
Any, BaseChatModel | None | ChatOpenAI | ChatMistralAI]:
|
|
"""
|
|
Get a prompt template
|
|
"""
|
|
prompt = cache_manager.prompts_config_cache.get_config(template_name, version)
|
|
if "llm_model" in prompt:
|
|
llm = get_embedding_llm(full_model_name=prompt["llm_model"], temperature=temperature)
|
|
else:
|
|
llm = get_embedding_llm(temperature=temperature)
|
|
|
|
return prompt["content"], llm
|
|
|
|
|
|
def get_transcription_model(model_name: str = "whisper-1") -> TrackedOpenAITranscription:
|
|
"""
|
|
Get a transcription model instance
|
|
"""
|
|
api_key = os.getenv('OPENAI_API_KEY')
|
|
return TrackedOpenAITranscription(
|
|
api_key=api_key,
|
|
model=model_name
|
|
)
|