8 Commits

Author SHA1 Message Date
Josako
883175b8f5 - Portkey log retrieval started
- flower container added (dev and prod)
2024-10-01 08:01:59 +02:00
Josako
ae697df4c9 Session_id was not correctly stored for chat sessions, and it was defined as an integer iso a UUID in the database 2024-09-27 11:24:43 +02:00
Josako
d9cb00fcdc Business event tracing completed for both eveai_workers tasks and eveai_chat_workers tasks 2024-09-27 10:53:42 +02:00
Josako
ee1b0f1cfa Start log tracing to log business events. Storage in both database and logging-backend. 2024-09-25 15:39:25 +02:00
Josako
a740c96630 - turned model_variables into a class with lazy loading
- some improvements to Healthchecks
2024-09-24 10:48:52 +02:00
Josako
67bdeac434 - Improvements and bugfixes to HealthChecks 2024-09-16 16:17:54 +02:00
Josako
1622591afd Adding code to backend. 2024-09-16 09:39:34 +02:00
Josako
6cf660e622 - Adding a Tenant Type
- Allow filtering on Tenant Types & searching for parts of Tenant names
- Implement health checks
- Start Prometheus monitoring (needs to be finalized)
- Refine audio_processor and srt_processor to reduce duplicate code and support for larger files
- Introduce repopack to reason in LLMs about the code
2024-09-13 15:43:40 +02:00
67 changed files with 1939 additions and 1299 deletions

1
.gitignore vendored
View File

@@ -41,3 +41,4 @@ migrations/.DS_Store
migrations/public/.DS_Store
scripts/.DS_Store
scripts/__pycache__/run_eveai_app.cpython-312.pyc
/eveai_repo.txt

21
.repopackignore Normal file
View File

@@ -0,0 +1,21 @@
# Add patterns to ignore here, one per line
# Example:
# *.log
# tmp/
logs/
nginx/static/assets/fonts/
nginx/static/assets/img/
nginx/static/assets/js/
nginx/static/scss/
patched_packages/
migrations/
*material*
*nucleo*
*package*
nginx/mime.types
*.gitignore*
.python-version
.repopackignore
repopack.config.json

View File

@@ -24,7 +24,30 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
### Security
- In case of vulnerabilities.
-
## [1.0.8-alfa] - 2024-09-12
### Added
- Tenant type defined to allow for active, inactive, demo ... tenants
- Search and filtering functionality on Tenants
- Implementation of health checks (1st version)
- Provision for Prometheus monitoring (no implementation yet)
- Refine audio_processor and srt_processor to reduce duplicate code and support larger files
- Introduction of repopack to reason in LLMs about the code
### Fixed
- Refine audio_processor and srt_processor to reduce duplicate code and support larger files
## [1.0.7-alfa] - 2024-09-12
### Added
- Full Document API allowing for creation, updating and invalidation of documents.
- Metadata fields (JSON) added to DocumentVersion, allowing end-users to add structured information
- Wordpress plugin eveai_sync to synchronize Wordpress content with EveAI
### Fixed
- Maximal deduplication of code between views and api in document_utils.py
## [1.0.6-alfa] - 2024-09-03
### Fixed

View File

@@ -10,8 +10,8 @@ from flask_jwt_extended import JWTManager
from flask_session import Session
from flask_wtf import CSRFProtect
from flask_restx import Api
from prometheus_flask_exporter import PrometheusMetrics
from .utils.nginx_utils import prefixed_url_for
from .utils.simple_encryption import SimpleEncryption
from .utils.minio_utils import MinioClient
@@ -31,3 +31,4 @@ session = Session()
api_rest = Api()
simple_encryption = SimpleEncryption()
minio_client = MinioClient()
metrics = PrometheusMetrics.for_app_factory()

View File

@@ -1,23 +1,31 @@
from langchain_core.retrievers import BaseRetriever
from sqlalchemy import asc
from sqlalchemy.exc import SQLAlchemyError
from pydantic import BaseModel, Field
from pydantic import Field, BaseModel, PrivateAttr
from typing import Any, Dict
from flask import current_app
from common.extensions import db
from common.models.interaction import ChatSession, Interaction
from common.utils.datetime_utils import get_date_in_timezone
from common.utils.model_utils import ModelVariables
class EveAIHistoryRetriever(BaseRetriever):
model_variables: Dict[str, Any] = Field(...)
session_id: str = Field(...)
class EveAIHistoryRetriever(BaseRetriever, BaseModel):
_model_variables: ModelVariables = PrivateAttr()
_session_id: str = PrivateAttr()
def __init__(self, model_variables: Dict[str, Any], session_id: str):
def __init__(self, model_variables: ModelVariables, session_id: str):
super().__init__()
self.model_variables = model_variables
self.session_id = session_id
self._model_variables = model_variables
self._session_id = session_id
@property
def model_variables(self) -> ModelVariables:
return self._model_variables
@property
def session_id(self) -> str:
return self._session_id
def _get_relevant_documents(self, query: str):
current_app.logger.debug(f'Retrieving history of interactions for query: {query}')

View File

@@ -1,30 +1,39 @@
from langchain_core.retrievers import BaseRetriever
from sqlalchemy import func, and_, or_, desc
from sqlalchemy.exc import SQLAlchemyError
from pydantic import BaseModel, Field
from pydantic import BaseModel, Field, PrivateAttr
from typing import Any, Dict
from flask import current_app
from common.extensions import db
from common.models.document import Document, DocumentVersion
from common.utils.datetime_utils import get_date_in_timezone
from common.utils.model_utils import ModelVariables
class EveAIRetriever(BaseRetriever):
model_variables: Dict[str, Any] = Field(...)
tenant_info: Dict[str, Any] = Field(...)
class EveAIRetriever(BaseRetriever, BaseModel):
_model_variables: ModelVariables = PrivateAttr()
_tenant_info: Dict[str, Any] = PrivateAttr()
def __init__(self, model_variables: Dict[str, Any], tenant_info: Dict[str, Any]):
def __init__(self, model_variables: ModelVariables, tenant_info: Dict[str, Any]):
super().__init__()
self.model_variables = model_variables
self.tenant_info = tenant_info
current_app.logger.debug(f'Model variables type: {type(model_variables)}')
self._model_variables = model_variables
self._tenant_info = tenant_info
@property
def model_variables(self) -> ModelVariables:
return self._model_variables
@property
def tenant_info(self) -> Dict[str, Any]:
return self._tenant_info
def _get_relevant_documents(self, query: str):
current_app.logger.debug(f'Retrieving relevant documents for query: {query}')
query_embedding = self._get_query_embedding(query)
current_app.logger.debug(f'Model Variables Private: {type(self._model_variables)}')
current_app.logger.debug(f'Model Variables Property: {type(self.model_variables)}')
db_class = self.model_variables['embedding_db_model']
similarity_threshold = self.model_variables['similarity_threshold']
k = self.model_variables['k']

View File

@@ -0,0 +1,21 @@
from common.extensions import db
class BusinessEventLog(db.Model):
__bind_key__ = 'public'
__table_args__ = {'schema': 'public'}
id = db.Column(db.Integer, primary_key=True)
timestamp = db.Column(db.DateTime, nullable=False)
event_type = db.Column(db.String(50), nullable=False)
tenant_id = db.Column(db.Integer, nullable=False)
trace_id = db.Column(db.String(50), nullable=False)
span_id = db.Column(db.String(50))
span_name = db.Column(db.String(50))
parent_span_id = db.Column(db.String(50))
document_version_id = db.Column(db.Integer)
chat_session_id = db.Column(db.String(50))
interaction_id = db.Column(db.Integer)
environment = db.Column(db.String(20))
message = db.Column(db.Text)
# Add any other fields relevant for invoicing or warnings

View File

@@ -2,7 +2,6 @@ from common.extensions import db
from flask_security import UserMixin, RoleMixin
from sqlalchemy.dialects.postgresql import ARRAY
import sqlalchemy as sa
from sqlalchemy import CheckConstraint
class Tenant(db.Model):
@@ -21,6 +20,7 @@ class Tenant(db.Model):
website = db.Column(db.String(255), nullable=True)
timezone = db.Column(db.String(50), nullable=True, default='UTC')
rag_context = db.Column(db.Text, nullable=True)
type = db.Column(db.String(20), nullable=True, server_default='Active')
# language information
default_language = db.Column(db.String(2), nullable=True)
@@ -56,7 +56,6 @@ class Tenant(db.Model):
encrypted_chat_api_key = db.Column(db.String(500), nullable=True)
encrypted_api_key = db.Column(db.String(500), nullable=True)
# Tuning enablers
embed_tuning = db.Column(db.Boolean, nullable=True, default=False)
rag_tuning = db.Column(db.Boolean, nullable=True, default=False)
@@ -75,6 +74,7 @@ class Tenant(db.Model):
'website': self.website,
'timezone': self.timezone,
'rag_context': self.rag_context,
'type': self.type,
'default_language': self.default_language,
'allowed_languages': self.allowed_languages,
'embedding_model': self.embedding_model,

View File

@@ -0,0 +1,114 @@
import os
import uuid
from contextlib import contextmanager
from datetime import datetime
from typing import Dict, Any, Optional
from datetime import datetime as dt, timezone as tz
from portkey_ai import Portkey, Config
import logging
from .business_event_context import BusinessEventContext
from common.models.monitoring import BusinessEventLog
from common.extensions import db
class BusinessEvent:
# The BusinessEvent class itself is a context manager, but it doesn't use the @contextmanager decorator.
# Instead, it defines __enter__ and __exit__ methods explicitly. This is because we're doing something a bit more
# complex - we're interacting with the BusinessEventContext and the _business_event_stack.
def __init__(self, event_type: str, tenant_id: int, **kwargs):
self.event_type = event_type
self.tenant_id = tenant_id
self.trace_id = str(uuid.uuid4())
self.span_id = None
self.span_name = None
self.parent_span_id = None
self.document_version_id = kwargs.get('document_version_id')
self.chat_session_id = kwargs.get('chat_session_id')
self.interaction_id = kwargs.get('interaction_id')
self.environment = os.environ.get("FLASK_ENV", "development")
self.span_counter = 0
self.spans = []
def update_attribute(self, attribute: str, value: any):
if hasattr(self, attribute):
setattr(self, attribute, value)
else:
raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{attribute}'")
@contextmanager
def create_span(self, span_name: str):
# The create_span method is designed to be used as a context manager. We want to perform some actions when
# entering the span (like setting the span ID and name) and some actions when exiting the span (like removing
# these temporary attributes). The @contextmanager decorator allows us to write this method in a way that
# clearly separates the "entry" and "exit" logic, with the yield statement in between.
parent_span_id = self.span_id
self.span_counter += 1
new_span_id = str(uuid.uuid4())
# Save the current span info
self.spans.append((self.span_id, self.span_name, self.parent_span_id))
# Set the new span info
self.span_id = new_span_id
self.span_name = span_name
self.parent_span_id = parent_span_id
self.log(f"Starting span {span_name}")
try:
yield
finally:
self.log(f"Ending span {span_name}")
# Restore the previous span info
if self.spans:
self.span_id, self.span_name, self.parent_span_id = self.spans.pop()
else:
self.span_id = None
self.span_name = None
self.parent_span_id = None
def log(self, message: str, level: str = 'info'):
logger = logging.getLogger('business_events')
log_data = {
'event_type': self.event_type,
'tenant_id': self.tenant_id,
'trace_id': self.trace_id,
'span_id': self.span_id,
'span_name': self.span_name,
'parent_span_id': self.parent_span_id,
'document_version_id': self.document_version_id,
'chat_session_id': self.chat_session_id,
'interaction_id': self.interaction_id,
'environment': self.environment
}
# log to Graylog
getattr(logger, level)(message, extra=log_data)
# Log to database
event_log = BusinessEventLog(
timestamp=dt.now(tz=tz.utc),
event_type=self.event_type,
tenant_id=self.tenant_id,
trace_id=self.trace_id,
span_id=self.span_id,
span_name=self.span_name,
parent_span_id=self.parent_span_id,
document_version_id=self.document_version_id,
chat_session_id=self.chat_session_id,
interaction_id=self.interaction_id,
environment=self.environment,
message=message
)
db.session.add(event_log)
db.session.commit()
def __enter__(self):
self.log(f'Starting Trace for {self.event_type}')
return BusinessEventContext(self).__enter__()
def __exit__(self, exc_type, exc_val, exc_tb):
self.log(f'Ending Trace for {self.event_type}')
return BusinessEventContext(self).__exit__(exc_type, exc_val, exc_tb)

View File

@@ -0,0 +1,25 @@
from werkzeug.local import LocalProxy, LocalStack
_business_event_stack = LocalStack()
def _get_current_event():
top = _business_event_stack.top
if top is None:
raise RuntimeError("No business event context found. Are you sure you're in a business event?")
return top
current_event = LocalProxy(_get_current_event)
class BusinessEventContext:
def __init__(self, event):
self.event = event
def __enter__(self):
_business_event_stack.push(self.event)
return self.event
def __exit__(self, exc_type, exc_val, exc_tb):
_business_event_stack.pop()

View File

@@ -23,6 +23,14 @@ def cors_after_request(response, prefix):
current_app.logger.debug(f'request.args: {request.args}')
current_app.logger.debug(f'request is json?: {request.is_json}')
# Exclude health checks from checks
if request.path.startswith('/healthz') or request.path.startswith('/_healthz'):
current_app.logger.debug('Skipping CORS headers for health checks')
response.headers.add('Access-Control-Allow-Origin', '*')
response.headers.add('Access-Control-Allow-Headers', '*')
response.headers.add('Access-Control-Allow-Methods', '*')
return response
tenant_id = None
allowed_origins = []

View File

@@ -5,14 +5,16 @@ from flask import current_app
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_anthropic import ChatAnthropic
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain.prompts import ChatPromptTemplate
import ast
from typing import List
from typing import List, Any, Iterator
from collections.abc import MutableMapping
from openai import OpenAI
# from groq import Groq
from portkey_ai import createHeaders, PORTKEY_GATEWAY_URL
from portkey_ai.langchain.portkey_langchain_callback_handler import LangchainCallbackHandler
from common.models.document import EmbeddingSmallOpenAI, EmbeddingLargeOpenAI
from common.models.user import Tenant
from config.model_config import MODEL_CONFIG
from common.utils.business_event_context import current_event
class CitedAnswer(BaseModel):
@@ -36,180 +38,264 @@ def set_language_prompt_template(cls, language_prompt):
cls.__doc__ = language_prompt
class ModelVariables(MutableMapping):
def __init__(self, tenant: Tenant):
self.tenant = tenant
self._variables = self._initialize_variables()
self._embedding_model = None
self._llm = None
self._llm_no_rag = None
self._transcription_client = None
self._prompt_templates = {}
self._embedding_db_model = None
def _initialize_variables(self):
variables = {}
# We initialize the variables that are available knowing the tenant. For the other, we will apply 'lazy loading'
variables['k'] = self.tenant.es_k or 5
variables['similarity_threshold'] = self.tenant.es_similarity_threshold or 0.7
variables['RAG_temperature'] = self.tenant.chat_RAG_temperature or 0.3
variables['no_RAG_temperature'] = self.tenant.chat_no_RAG_temperature or 0.5
variables['embed_tuning'] = self.tenant.embed_tuning or False
variables['rag_tuning'] = self.tenant.rag_tuning or False
variables['rag_context'] = self.tenant.rag_context or " "
# Set HTML Chunking Variables
variables['html_tags'] = self.tenant.html_tags
variables['html_end_tags'] = self.tenant.html_end_tags
variables['html_included_elements'] = self.tenant.html_included_elements
variables['html_excluded_elements'] = self.tenant.html_excluded_elements
variables['html_excluded_classes'] = self.tenant.html_excluded_classes
# Set Chunk Size variables
variables['min_chunk_size'] = self.tenant.min_chunk_size
variables['max_chunk_size'] = self.tenant.max_chunk_size
# Set model providers
variables['embedding_provider'], variables['embedding_model'] = self.tenant.embedding_model.rsplit('.', 1)
variables['llm_provider'], variables['llm_model'] = self.tenant.llm_model.rsplit('.', 1)
variables["templates"] = current_app.config['PROMPT_TEMPLATES'][(f"{variables['llm_provider']}."
f"{variables['llm_model']}")]
current_app.logger.info(f"Loaded prompt templates: \n")
current_app.logger.info(f"{variables['templates']}")
# Set model-specific configurations
model_config = MODEL_CONFIG.get(variables['llm_provider'], {}).get(variables['llm_model'], {})
variables.update(model_config)
variables['annotation_chunk_length'] = current_app.config['ANNOTATION_TEXT_CHUNK_LENGTH'][self.tenant.llm_model]
if variables['tool_calling_supported']:
variables['cited_answer_cls'] = CitedAnswer
return variables
@property
def embedding_model(self):
portkey_metadata = self.get_portkey_metadata()
portkey_headers = createHeaders(api_key=os.getenv('PORTKEY_API_KEY'),
provider=self._variables['embedding_provider'],
metadata=portkey_metadata,
trace_id=current_event.trace_id,
span_id=current_event.span_id,
span_name=current_event.span_name,
parent_span_id=current_event.parent_span_id
)
api_key = os.getenv('OPENAI_API_KEY')
model = self._variables['embedding_model']
self._embedding_model = OpenAIEmbeddings(api_key=api_key,
model=model,
base_url=PORTKEY_GATEWAY_URL,
default_headers=portkey_headers)
self._embedding_db_model = EmbeddingSmallOpenAI \
if model == 'text-embedding-3-small' \
else EmbeddingLargeOpenAI
return self._embedding_model
@property
def llm(self):
portkey_headers = self.get_portkey_headers_for_llm()
api_key = self.get_api_key_for_llm()
self._llm = ChatOpenAI(api_key=api_key,
model=self._variables['llm_model'],
temperature=self._variables['RAG_temperature'],
base_url=PORTKEY_GATEWAY_URL,
default_headers=portkey_headers)
return self._llm
@property
def llm_no_rag(self):
portkey_headers = self.get_portkey_headers_for_llm()
api_key = self.get_api_key_for_llm()
self._llm_no_rag = ChatOpenAI(api_key=api_key,
model=self._variables['llm_model'],
temperature=self._variables['RAG_temperature'],
base_url=PORTKEY_GATEWAY_URL,
default_headers=portkey_headers)
return self._llm_no_rag
def get_portkey_headers_for_llm(self):
portkey_metadata = self.get_portkey_metadata()
portkey_headers = createHeaders(api_key=os.getenv('PORTKEY_API_KEY'),
metadata=portkey_metadata,
provider=self._variables['llm_provider'],
trace_id=current_event.trace_id,
span_id=current_event.span_id,
span_name=current_event.span_name,
parent_span_id=current_event.parent_span_id
)
return portkey_headers
def get_portkey_metadata(self):
environment = os.getenv('FLASK_ENV', 'development')
portkey_metadata = {'tenant_id': str(self.tenant.id),
'environment': environment,
'trace_id': current_event.trace_id,
'span_id': current_event.span_id,
'span_name': current_event.span_name,
'parent_span_id': current_event.parent_span_id,
}
return portkey_metadata
def get_api_key_for_llm(self):
if self._variables['llm_provider'] == 'openai':
api_key = os.getenv('OPENAI_API_KEY')
else: # self._variables['llm_provider'] == 'anthropic'
api_key = os.getenv('ANTHROPIC_API_KEY')
return api_key
# def _initialize_llm(self):
#
#
# if self._variables['llm_provider'] == 'openai':
# portkey_headers = createHeaders(api_key=os.getenv('PORTKEY_API_KEY'),
# metadata=portkey_metadata,
# provider='openai')
#
# self._llm = ChatOpenAI(api_key=api_key,
# model=self._variables['llm_model'],
# temperature=self._variables['RAG_temperature'],
# base_url=PORTKEY_GATEWAY_URL,
# default_headers=portkey_headers)
# self._llm_no_rag = ChatOpenAI(api_key=api_key,
# model=self._variables['llm_model'],
# temperature=self._variables['no_RAG_temperature'],
# base_url=PORTKEY_GATEWAY_URL,
# default_headers=portkey_headers)
# self._variables['tool_calling_supported'] = self._variables['llm_model'] in ['gpt-4o', 'gpt-4o-mini']
# elif self._variables['llm_provider'] == 'anthropic':
# api_key = os.getenv('ANTHROPIC_API_KEY')
# llm_model_ext = os.getenv('ANTHROPIC_LLM_VERSIONS', {}).get(self._variables['llm_model'])
# self._llm = ChatAnthropic(api_key=api_key,
# model=llm_model_ext,
# temperature=self._variables['RAG_temperature'])
# self._llm_no_rag = ChatAnthropic(api_key=api_key,
# model=llm_model_ext,
# temperature=self._variables['RAG_temperature'])
# self._variables['tool_calling_supported'] = True
# else:
# raise ValueError(f"Invalid chat provider: {self._variables['llm_provider']}")
@property
def transcription_client(self):
environment = os.getenv('FLASK_ENV', 'development')
portkey_metadata = self.get_portkey_metadata()
portkey_headers = createHeaders(api_key=os.getenv('PORTKEY_API_KEY'),
metadata=portkey_metadata,
provider='openai',
trace_id=current_event.trace_id,
span_id=current_event.span_id,
span_name=current_event.span_name,
parent_span_id=current_event.parent_span_id
)
api_key = os.getenv('OPENAI_API_KEY')
self._transcription_client = OpenAI(api_key=api_key,
base_url=PORTKEY_GATEWAY_URL,
default_headers=portkey_headers)
self._variables['transcription_model'] = 'whisper-1'
return self._transcription_client
@property
def embedding_db_model(self):
if self._embedding_db_model is None:
self._embedding_db_model = self.get_embedding_db_model()
return self._embedding_db_model
def get_embedding_db_model(self):
current_app.logger.debug("In get_embedding_db_model")
if self._embedding_db_model is None:
self._embedding_db_model = EmbeddingSmallOpenAI \
if self._variables['embedding_model'] == 'text-embedding-3-small' \
else EmbeddingLargeOpenAI
current_app.logger.debug(f"Embedding DB Model: {self._embedding_db_model}")
return self._embedding_db_model
def get_prompt_template(self, template_name: str) -> str:
current_app.logger.info(f"Getting prompt template for {template_name}")
if template_name not in self._prompt_templates:
self._prompt_templates[template_name] = self._load_prompt_template(template_name)
return self._prompt_templates[template_name]
def _load_prompt_template(self, template_name: str) -> str:
# In the future, this method will make an API call to Portkey
# For now, we'll simulate it with a placeholder implementation
# You can replace this with your current prompt loading logic
return self._variables['templates'][template_name]
def __getitem__(self, key: str) -> Any:
current_app.logger.debug(f"ModelVariables: Getting {key}")
# Support older template names (suffix = _template)
if key.endswith('_template'):
key = key[:-len('_template')]
current_app.logger.debug(f"ModelVariables: Getting modified {key}")
if key == 'embedding_model':
return self.embedding_model
elif key == 'embedding_db_model':
return self.embedding_db_model
elif key == 'llm':
return self.llm
elif key == 'llm_no_rag':
return self.llm_no_rag
elif key == 'transcription_client':
return self.transcription_client
elif key in self._variables.get('prompt_templates', []):
return self.get_prompt_template(key)
return self._variables.get(key)
def __setitem__(self, key: str, value: Any) -> None:
self._variables[key] = value
def __delitem__(self, key: str) -> None:
del self._variables[key]
def __iter__(self) -> Iterator[str]:
return iter(self._variables)
def __len__(self):
return len(self._variables)
def get(self, key: str, default: Any = None) -> Any:
return self.__getitem__(key) or default
def update(self, **kwargs) -> None:
self._variables.update(kwargs)
def items(self):
return self._variables.items()
def keys(self):
return self._variables.keys()
def values(self):
return self._variables.values()
def select_model_variables(tenant):
embedding_provider = tenant.embedding_model.rsplit('.', 1)[0]
embedding_model = tenant.embedding_model.rsplit('.', 1)[1]
llm_provider = tenant.llm_model.rsplit('.', 1)[0]
llm_model = tenant.llm_model.rsplit('.', 1)[1]
# Set model variables
model_variables = {}
if tenant.es_k:
model_variables['k'] = tenant.es_k
else:
model_variables['k'] = 5
if tenant.es_similarity_threshold:
model_variables['similarity_threshold'] = tenant.es_similarity_threshold
else:
model_variables['similarity_threshold'] = 0.7
if tenant.chat_RAG_temperature:
model_variables['RAG_temperature'] = tenant.chat_RAG_temperature
else:
model_variables['RAG_temperature'] = 0.3
if tenant.chat_no_RAG_temperature:
model_variables['no_RAG_temperature'] = tenant.chat_no_RAG_temperature
else:
model_variables['no_RAG_temperature'] = 0.5
# Set Tuning variables
if tenant.embed_tuning:
model_variables['embed_tuning'] = tenant.embed_tuning
else:
model_variables['embed_tuning'] = False
if tenant.rag_tuning:
model_variables['rag_tuning'] = tenant.rag_tuning
else:
model_variables['rag_tuning'] = False
if tenant.rag_context:
model_variables['rag_context'] = tenant.rag_context
else:
model_variables['rag_context'] = " "
# Set HTML Chunking Variables
model_variables['html_tags'] = tenant.html_tags
model_variables['html_end_tags'] = tenant.html_end_tags
model_variables['html_included_elements'] = tenant.html_included_elements
model_variables['html_excluded_elements'] = tenant.html_excluded_elements
model_variables['html_excluded_classes'] = tenant.html_excluded_classes
# Set Chunk Size variables
model_variables['min_chunk_size'] = tenant.min_chunk_size
model_variables['max_chunk_size'] = tenant.max_chunk_size
environment = os.getenv('FLASK_ENV', 'development')
portkey_metadata = {'tenant_id': str(tenant.id), 'environment': environment}
# Set Embedding variables
match embedding_provider:
case 'openai':
portkey_headers = createHeaders(api_key=current_app.config.get('PORTKEY_API_KEY'),
provider='openai',
metadata=portkey_metadata)
match embedding_model:
case 'text-embedding-3-small':
api_key = current_app.config.get('OPENAI_API_KEY')
model_variables['embedding_model'] = OpenAIEmbeddings(api_key=api_key,
model='text-embedding-3-small',
base_url=PORTKEY_GATEWAY_URL,
default_headers=portkey_headers
)
model_variables['embedding_db_model'] = EmbeddingSmallOpenAI
case 'text-embedding-3-large':
api_key = current_app.config.get('OPENAI_API_KEY')
model_variables['embedding_model'] = OpenAIEmbeddings(api_key=api_key,
model='text-embedding-3-large',
base_url=PORTKEY_GATEWAY_URL,
default_headers=portkey_headers
)
model_variables['embedding_db_model'] = EmbeddingLargeOpenAI
case _:
raise Exception(f'Error setting model variables for tenant {tenant.id} '
f'error: Invalid embedding model')
case _:
raise Exception(f'Error setting model variables for tenant {tenant.id} '
f'error: Invalid embedding provider')
# Set Chat model variables
match llm_provider:
case 'openai':
portkey_headers = createHeaders(api_key=current_app.config.get('PORTKEY_API_KEY'),
metadata=portkey_metadata,
provider='openai')
tool_calling_supported = False
api_key = current_app.config.get('OPENAI_API_KEY')
model_variables['llm'] = ChatOpenAI(api_key=api_key,
model=llm_model,
temperature=model_variables['RAG_temperature'],
base_url=PORTKEY_GATEWAY_URL,
default_headers=portkey_headers)
model_variables['llm_no_rag'] = ChatOpenAI(api_key=api_key,
model=llm_model,
temperature=model_variables['no_RAG_temperature'],
base_url=PORTKEY_GATEWAY_URL,
default_headers=portkey_headers)
tool_calling_supported = False
match llm_model:
case 'gpt-4o' | 'gpt-4o-mini':
tool_calling_supported = True
PDF_chunk_size = 10000
PDF_chunk_overlap = 200
PDF_min_chunk_size = 8000
PDF_max_chunk_size = 12000
case _:
raise Exception(f'Error setting model variables for tenant {tenant.id} '
f'error: Invalid chat model')
case 'anthropic':
api_key = current_app.config.get('ANTHROPIC_API_KEY')
# Anthropic does not have the same 'generic' model names as OpenAI
llm_model_ext = current_app.config.get('ANTHROPIC_LLM_VERSIONS').get(llm_model)
model_variables['llm'] = ChatAnthropic(api_key=api_key,
model=llm_model_ext,
temperature=model_variables['RAG_temperature'])
model_variables['llm_no_rag'] = ChatAnthropic(api_key=api_key,
model=llm_model_ext,
temperature=model_variables['RAG_temperature'])
tool_calling_supported = True
PDF_chunk_size = 10000
PDF_chunk_overlap = 200
PDF_min_chunk_size = 8000
PDF_max_chunk_size = 12000
case _:
raise Exception(f'Error setting model variables for tenant {tenant.id} '
f'error: Invalid chat provider')
model_variables['PDF_chunk_size'] = PDF_chunk_size
model_variables['PDF_chunk_overlap'] = PDF_chunk_overlap
model_variables['PDF_min_chunk_size'] = PDF_min_chunk_size
model_variables['PDF_max_chunk_size'] = PDF_max_chunk_size
if tool_calling_supported:
model_variables['cited_answer_cls'] = CitedAnswer
templates = current_app.config['PROMPT_TEMPLATES'][f'{llm_provider}.{llm_model}']
model_variables['summary_template'] = templates['summary']
model_variables['rag_template'] = templates['rag']
model_variables['history_template'] = templates['history']
model_variables['encyclopedia_template'] = templates['encyclopedia']
model_variables['transcript_template'] = templates['transcript']
model_variables['html_parse_template'] = templates['html_parse']
model_variables['pdf_parse_template'] = templates['pdf_parse']
model_variables['annotation_chunk_length'] = current_app.config['ANNOTATION_TEXT_CHUNK_LENGTH'][tenant.llm_model]
# Transcription Client Variables.
# Using Groq
# api_key = current_app.config.get('GROQ_API_KEY')
# model_variables['transcription_client'] = Groq(api_key=api_key)
# model_variables['transcription_model'] = 'whisper-large-v3'
# Using OpenAI for transcriptions
portkey_metadata = {'tenant_id': str(tenant.id)}
portkey_headers = createHeaders(api_key=current_app.config.get('PORTKEY_API_KEY'),
metadata=portkey_metadata,
provider='openai'
)
api_key = current_app.config.get('OPENAI_API_KEY')
model_variables['transcription_client'] = OpenAI(api_key=api_key,
base_url=PORTKEY_GATEWAY_URL,
default_headers=portkey_headers)
model_variables['transcription_model'] = 'whisper-1'
model_variables = ModelVariables(tenant=tenant)
return model_variables

View File

@@ -0,0 +1,99 @@
import requests
import json
from typing import Optional
# Define a function to make the GET request
def get_metadata_grouped_data(
api_key: str,
metadata_key: str,
time_of_generation_min: Optional[str] = None,
time_of_generation_max: Optional[str] = None,
total_units_min: Optional[int] = None,
total_units_max: Optional[int] = None,
cost_min: Optional[float] = None,
cost_max: Optional[float] = None,
prompt_token_min: Optional[int] = None,
prompt_token_max: Optional[int] = None,
completion_token_min: Optional[int] = None,
completion_token_max: Optional[int] = None,
status_code: Optional[str] = None,
weighted_feedback_min: Optional[float] = None,
weighted_feedback_max: Optional[float] = None,
virtual_keys: Optional[str] = None,
configs: Optional[str] = None,
workspace_slug: Optional[str] = None,
api_key_ids: Optional[str] = None,
current_page: Optional[int] = 1,
page_size: Optional[int] = 20,
metadata: Optional[str] = None,
ai_org_model: Optional[str] = None,
trace_id: Optional[str] = None,
span_id: Optional[str] = None,
):
url = f"https://api.portkey.ai/v1/analytics/groups/metadata/{metadata_key}"
# Set up query parameters
params = {
"time_of_generation_min": time_of_generation_min,
"time_of_generation_max": time_of_generation_max,
"total_units_min": total_units_min,
"total_units_max": total_units_max,
"cost_min": cost_min,
"cost_max": cost_max,
"prompt_token_min": prompt_token_min,
"prompt_token_max": prompt_token_max,
"completion_token_min": completion_token_min,
"completion_token_max": completion_token_max,
"status_code": status_code,
"weighted_feedback_min": weighted_feedback_min,
"weighted_feedback_max": weighted_feedback_max,
"virtual_keys": virtual_keys,
"configs": configs,
"workspace_slug": workspace_slug,
"api_key_ids": api_key_ids,
"current_page": current_page,
"page_size": page_size,
"metadata": metadata,
"ai_org_model": ai_org_model,
"trace_id": trace_id,
"span_id": span_id,
}
# Remove any keys with None values
params = {k: v for k, v in params.items() if v is not None}
# Set up the headers
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
# Make the GET request
response = requests.get(url, headers=headers, params=params)
# Check for successful response
if response.status_code == 200:
return response.json() # Return JSON data
else:
response.raise_for_status() # Raise an exception for errors
# Example usage
# Replace 'your_api_key' and 'your_metadata_key' with actual values
api_key = 'your_api_key'
metadata_key = 'your_metadata_key'
try:
data = get_metadata_grouped_data(
api_key=api_key,
metadata_key=metadata_key,
time_of_generation_min="2024-08-23T15:50:23+05:30",
time_of_generation_max="2024-09-23T15:50:23+05:30",
total_units_min=100,
total_units_max=1000,
cost_min=10,
cost_max=100,
status_code="200,201"
)
print(json.dumps(data, indent=4))
except Exception as e:
print(f"Error occurred: {str(e)}")

View File

@@ -1,4 +1,4 @@
from flask import flash
from flask import flash, current_app
def prepare_table(model_objects, column_names):
@@ -44,7 +44,8 @@ def form_validation_failed(request, form):
for fieldName, errorMessages in form.errors.items():
for err in errorMessages:
flash(f"Error in {fieldName}: {err}", 'danger')
current_app.logger.debug(f"Error in {fieldName}: {err}", 'danger')
def form_to_dict(form):
return {field.name: field.data for field in form if field.name != 'csrf_token' and hasattr(field, 'data')}
return {field.name: field.data for field in form if field.name != 'csrf_token' and hasattr(field, 'data')}

View File

@@ -137,9 +137,15 @@ class Config(object):
MAIL_PASSWORD = environ.get('MAIL_PASSWORD')
MAIL_DEFAULT_SENDER = ('eveAI Admin', MAIL_USERNAME)
# Langsmith settings
LANGCHAIN_TRACING_V2 = True
LANGCHAIN_ENDPOINT = 'https://api.smith.langchain.com'
LANGCHAIN_PROJECT = "eveai"
SUPPORTED_FILE_TYPES = ['pdf', 'html', 'md', 'txt', 'mp3', 'mp4', 'ogg', 'srt']
TENANT_TYPES = ['Active', 'Demo', 'Inactive', 'Test']
class DevConfig(Config):

View File

@@ -1,13 +0,0 @@
{
"type": "service_account",
"project_id": "eveai-420711",
"private_key_id": "e666408e75793321a6134243628346722a71b3a6",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQCaGTXCWpq08YD1\nOW4z+gncOlB7T/EIiEwsZgMp6pyUrNioGfiI9YN+uVR0nsUSmFf1YyerRgX7RqD5\nRc7T/OuX8iIvmloK3g7CaFezcVrjnBKcg/QsjDAt/OO3DTk4vykDlh/Kqxx73Jdv\nFH9YSV2H7ToWqIE8CTDnqe8vQS7Bq995c9fPlues31MgndRFg3CFkH0ldfZ4aGm3\n1RnBDyC+9SPQW9e7CJgNN9PWTmOT51Zyy5IRuV5OWePMQaGLVmCo5zNc/EHZEVRu\n1hxJPHL3NNmkYDY8tye8uHgjsAkv8QuwIuUSqnqjoo1/Yg+P0+9GCpePOAJRNxJS\n0YpDFWc5AgMBAAECggEACIU4/hG+bh97BD7JriFhfDDT6bg7g+pCs/hsAlxQ42jv\nOH7pyWuHJXGf5Cwx31usZAq4fcrgYnVpnyl8odIL628y9AjdI66wMuWhZnBFGJgK\nRhHcZWjW8nlXf0lBjwwFe4edzbn1AuWT5fYZ2HWDW2mthY/e8sUwqWPcWsjdifhz\nNR7V+Ia47McKXYgEKjyEObSP1NUOW24zH0DgxS52YPMwa1FoHn6+9Pr8P3TsTSO6\nh6f8tnd81DGl1UH4F5Bj/MHsQXyAMJbu44S4+rZ4Qlk+5xPp9hfCNpxWaHLIkJCg\nYXnC8UAjjyXiqyK0U0RjJf8TS1FxUI4iPepLNqp/pQKBgQDTicZnWFXmCFTnycWp\n66P3Yx0yvlKdUdfnoD/n9NdmUA3TZUlEVfb0IOm7ZFubF/zDTH87XrRiD/NVDbr8\n6bdhA1DXzraxhbfD36Hca6K74Ba4aYJsSWWwI0hL3FDSsv8c7qAIaUF2iwuHb7Y0\nRDcvZqowtQobcQC8cHLc/bI/ZwKBgQC6fMeGaU+lP6jhp9Nb/3Gz5Z1zzCu34IOo\nlgpTNZsowRKYLtjHifrEFi3XRxPKz5thMuJFniof5U4WoMYtRXy+PbgySvBpCia2\nXty05XssnLLMvLpYU5sbQvmOTe20zaIzLohRvvmqrydYIKu62NTubNeuD1L+Zr0q\nz1P5/wUgXwKBgQCW9MrRFQi3j1qHzkVwbOglsmUzwP3TpoQclw8DyIWuTZKQOMeA\nLJh+vr4NLCDzHLsT45MoGv0+vYM4PwQhV+e1I1idqLZXGMV60iv/0A/hYpjUIPch\nr38RoxwEhsRml7XWP7OUTQiaP7+Kdv3fbo6zFOB+wbLkwk90KgrOCX0aIQKBgFeK\n7esmErJjMPdFXk3om0q09nX+mWNHLOb+EDjBiGXYRM9V5oO9PQ/BzaEqh5sEXE+D\noH7H4cR5U3AB5yYnYYi41ngdf7//eO7Rl1AADhOCN9kum1eNX9mrVhU8deMTSRo3\ntNyTBwbeFF0lcRhUY5jNVW4rWW19cz3ed/B6i8CHAoGBAJ/l5rkV74Z5hg6BWNfQ\nYAg/4PLZmjnXIy5QdnWc/PYgbhn5+iVUcL9fSofFzJM1rjFnNcs3S90MGeOmfmo4\nM1WtcQFQbsCGt6+G5uEL/nf74mKUGpOqEM/XSkZ3inweWiDk3LK3iYfXCMBFouIr\n80IlzI1yMf7MVmWn3e1zPjCA\n-----END PRIVATE KEY-----\n",
"client_email": "eveai-349@eveai-420711.iam.gserviceaccount.com",
"client_id": "109927035346319712442",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/eveai-349%40eveai-420711.iam.gserviceaccount.com",
"universe_domain": "googleapis.com"
}

View File

@@ -12,7 +12,12 @@ env = os.environ.get('FLASK_ENV', 'development')
class CustomLogRecord(logging.LogRecord):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.component = os.environ.get('COMPONENT_NAME', 'eveai_app') # Set default component value here
self.component = os.environ.get('COMPONENT_NAME', 'eveai_app')
def __setattr__(self, name, value):
if name not in {'event_type', 'tenant_id', 'trace_id', 'span_id', 'span_name', 'parent_span_id',
'document_version_id', 'chat_session_id', 'interaction_id', 'environment'}:
super().__setattr__(name, value)
def custom_log_record_factory(*args, **kwargs):
@@ -108,6 +113,14 @@ LOGGING = {
'backupCount': 10,
'formatter': 'standard',
},
'file_business_events': {
'level': 'INFO',
'class': 'logging.handlers.RotatingFileHandler',
'filename': 'logs/business_events.log',
'maxBytes': 1024 * 1024 * 5, # 5MB
'backupCount': 10,
'formatter': 'standard',
},
'console': {
'class': 'logging.StreamHandler',
'level': 'DEBUG',
@@ -184,6 +197,11 @@ LOGGING = {
'level': 'DEBUG',
'propagate': False
},
'business_events': {
'handlers': ['file_business_events', 'graylog'],
'level': 'DEBUG',
'propagate': False
},
'': { # root logger
'handlers': ['console'],
'level': 'WARNING', # Set higher level for root to minimize noise

41
config/model_config.py Normal file
View File

@@ -0,0 +1,41 @@
MODEL_CONFIG = {
"openai": {
"gpt-4o": {
"tool_calling_supported": True,
"processing_chunk_size": 10000,
"processing_chunk_overlap": 200,
"processing_min_chunk_size": 8000,
"processing_max_chunk_size": 12000,
"prompt_templates": [
"summary", "rag", "history", "encyclopedia",
"transcript", "html_parse", "pdf_parse"
]
},
"gpt-4o-mini": {
"tool_calling_supported": True,
"processing_chunk_size": 10000,
"processing_chunk_overlap": 200,
"processing_min_chunk_size": 8000,
"processing_max_chunk_size": 12000,
"prompt_templates": [
"summary", "rag", "history", "encyclopedia",
"transcript", "html_parse", "pdf_parse"
]
},
# Add other OpenAI models here
},
"anthropic": {
"claude-3-5-sonnet": {
"tool_calling_supported": True,
"processing_chunk_size": 10000,
"processing_chunk_overlap": 200,
"processing_min_chunk_size": 8000,
"processing_max_chunk_size": 12000,
"prompt_templates": [
"summary", "rag", "history", "encyclopedia",
"transcript", "html_parse", "pdf_parse"
]
},
# Add other Anthropic models here
},
}

View File

@@ -65,11 +65,13 @@ encyclopedia: |
transcript: |
You are a top administrative assistant specialized in transforming given transcriptions into markdown formatted files. The generated files will be used to generate embeddings in a RAG-system. The transcriptions originate from podcast, videos and similar material.
You may receive information in different chunks. If you're not receiving the first chunk, you'll get the last part of the previous chunk, including it's title in between triple $. Consider this last part and the title as the start of the new chunk.
# Best practices and steps are:
- Respect wordings and language(s) used in the transcription. Main language is {language}.
- Sometimes, the transcript contains speech of several people participating in a conversation. Although these are not obvious from reading the file, try to detect when other people are speaking.
- Divide the transcript into several logical parts. Ensure questions and their answers are in the same logical part.
- Divide the transcript into several logical parts. Ensure questions and their answers are in the same logical part. Don't make logical parts too small. They should contain at least 7 or 8 sentences.
- annotate the text to identify these logical parts using headings in {language}.
- improve errors in the transcript given the context, but do not change the meaning and intentions of the transcription.
@@ -77,4 +79,6 @@ transcript: |
The transcript is between triple backquotes.
$$${previous_part}$$$
```{transcript}```

View File

@@ -141,7 +141,7 @@ if [ $# -eq 0 ]; then
SERVICES=()
while IFS= read -r line; do
SERVICES+=("$line")
done < <(yq e '.services | keys | .[]' compose_dev.yaml | grep -E '^(nginx|eveai_)')
done < <(yq e '.services | keys | .[]' compose_dev.yaml | grep -E '^(nginx|eveai_|flower)')
else
SERVICES=("$@")
fi
@@ -158,7 +158,7 @@ docker buildx use eveai_builder
# Loop through services
for SERVICE in "${SERVICES[@]}"; do
if [[ "$SERVICE" == "nginx" || "$SERVICE" == eveai_* ]]; then
if [[ "$SERVICE" == "nginx" || "$SERVICE" == eveai_* || "$SERVICE" == "flower" ]]; then
if process_service "$SERVICE"; then
echo "Successfully processed $SERVICE"
else

View File

@@ -22,6 +22,8 @@ x-common-variables: &common-variables
MAIL_PASSWORD: '$$6xsWGbNtx$$CFMQZqc*'
MAIL_SERVER: mail.flow-it.net
MAIL_PORT: 465
REDIS_URL: redis
REDIS_PORT: '6379'
OPENAI_API_KEY: 'sk-proj-8R0jWzwjL7PeoPyMhJTZT3BlbkFJLb6HfRB2Hr9cEVFWEhU7'
GROQ_API_KEY: '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'
ANTHROPIC_API_KEY: 'sk-ant-api03-c2TmkzbReeGhXBO5JxNH6BJNylRDonc9GmZd0eRbrvyekec2'
@@ -32,6 +34,7 @@ x-common-variables: &common-variables
MINIO_ACCESS_KEY: minioadmin
MINIO_SECRET_KEY: minioadmin
NGINX_SERVER_NAME: 'localhost http://macstudio.ask-eve-ai-local.com/'
LANGCHAIN_API_KEY: "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"
networks:
@@ -96,12 +99,11 @@ services:
minio:
condition: service_healthy
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:5001/health"]
interval: 10s
timeout: 5s
retries: 5
# entrypoint: ["scripts/entrypoint.sh"]
# command: ["scripts/start_eveai_app.sh"]
test: ["CMD", "curl", "-f", "http://localhost:5001/healthz/ready"]
interval: 30s
timeout: 1s
retries: 3
start_period: 30s
networks:
- eveai-network
@@ -113,8 +115,6 @@ services:
platforms:
- linux/amd64
- linux/arm64
# ports:
# - 5001:5001
environment:
<<: *common-variables
COMPONENT_NAME: eveai_workers
@@ -132,13 +132,6 @@ services:
condition: service_healthy
minio:
condition: service_healthy
# healthcheck:
# test: [ "CMD", "curl", "-f", "http://localhost:5001/health" ]
# interval: 10s
# timeout: 5s
# retries: 5
# entrypoint: [ "sh", "-c", "scripts/entrypoint.sh" ]
# command: [ "sh", "-c", "scripts/start_eveai_workers.sh" ]
networks:
- eveai-network
@@ -168,12 +161,11 @@ services:
redis:
condition: service_healthy
healthcheck:
test: [ "CMD", "curl", "-f", "http://localhost:5002/health" ] # Adjust based on your health endpoint
interval: 10s
timeout: 5s
retries: 5
# entrypoint: [ "sh", "-c", "scripts/entrypoint.sh" ]
# command: ["sh", "-c", "scripts/start_eveai_chat.sh"]
test: [ "CMD", "curl", "-f", "http://localhost:5002/healthz/ready" ] # Adjust based on your health endpoint
interval: 30s
timeout: 1s
retries: 3
start_period: 30s
networks:
- eveai-network
@@ -185,8 +177,6 @@ services:
platforms:
- linux/amd64
- linux/arm64
# ports:
# - 5001:5001
environment:
<<: *common-variables
COMPONENT_NAME: eveai_chat_workers
@@ -202,13 +192,6 @@ services:
condition: service_healthy
redis:
condition: service_healthy
# healthcheck:
# test: [ "CMD", "curl", "-f", "http://localhost:5001/health" ]
# interval: 10s
# timeout: 5s
# retries: 5
# entrypoint: [ "sh", "-c", "scripts/entrypoint.sh" ]
# command: [ "sh", "-c", "scripts/start_eveai_chat_workers.sh" ]
networks:
- eveai-network
@@ -240,12 +223,11 @@ services:
minio:
condition: service_healthy
healthcheck:
test: [ "CMD", "curl", "-f", "http://localhost:5003/health" ]
interval: 10s
timeout: 5s
retries: 5
# entrypoint: ["scripts/entrypoint.sh"]
# command: ["scripts/start_eveai_api.sh"]
test: [ "CMD", "curl", "-f", "http://localhost:5003/healthz/ready" ]
interval: 30s
timeout: 1s
retries: 3
start_period: 30s
networks:
- eveai-network
@@ -285,6 +267,22 @@ services:
networks:
- eveai-network
flower:
image: josakola/flower:latest
build:
context: ..
dockerfile: ./docker/flower/Dockerfile
environment:
<<: *common-variables
volumes:
- ../scripts:/app/scripts
ports:
- "5555:5555"
depends_on:
- redis
networks:
- eveai-network
minio:
image: minio/minio
ports:

View File

@@ -21,11 +21,13 @@ x-common-variables: &common-variables
MAIL_USERNAME: 'evie_admin@askeveai.com'
MAIL_PASSWORD: 's5D%R#y^v!s&6Z^i0k&'
MAIL_SERVER: mail.askeveai.com
MAIL_PORT: 465
MAIL_PORT: '465'
REDIS_USER: eveai
REDIS_PASS: 'jHliZwGD36sONgbm0fc6SOpzLbknqq4RNF8K'
REDIS_URL: 8bciqc.stackhero-network.com
REDIS_PORT: '9961'
FLOWER_USER: 'Felucia'
FLOWER_PASSWORD: 'Jungles'
OPENAI_API_KEY: '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'
GROQ_API_KEY: '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'
ANTHROPIC_API_KEY: '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'
@@ -38,6 +40,7 @@ x-common-variables: &common-variables
MINIO_ACCESS_KEY: 04JKmQln8PQpyTmMiCPc
MINIO_SECRET_KEY: 2PEZAD1nlpAmOyDV0TUTuJTQw1qVuYLF3A7GMs0D
NGINX_SERVER_NAME: 'evie.askeveai.com mxz536.stackhero-network.com'
LANGCHAIN_API_KEY: "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"
networks:
eveai-network:
@@ -53,10 +56,6 @@ services:
environment:
<<: *common-variables
volumes:
# - ../nginx:/etc/nginx
# - ../nginx/sites-enabled:/etc/nginx/sites-enabled
# - ../nginx/static:/etc/nginx/static
# - ../nginx/public:/etc/nginx/public
- eveai_logs:/var/log/nginx
labels:
- "traefik.enable=true"
@@ -81,7 +80,7 @@ services:
volumes:
- eveai_logs:/app/logs
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:5001/health"]
test: ["CMD", "curl", "-f", "http://localhost:5001/healthz/ready"]
interval: 10s
timeout: 5s
retries: 5
@@ -91,18 +90,11 @@ services:
eveai_workers:
platform: linux/amd64
image: josakola/eveai_workers:latest
# ports:
# - 5001:5001
environment:
<<: *common-variables
COMPONENT_NAME: eveai_workers
volumes:
- eveai_logs:/app/logs
# healthcheck:
# test: [ "CMD", "curl", "-f", "http://localhost:5001/health" ]
# interval: 10s
# timeout: 5s
# retries: 5
networks:
- eveai-network
@@ -117,7 +109,7 @@ services:
volumes:
- eveai_logs:/app/logs
healthcheck:
test: [ "CMD", "curl", "-f", "http://localhost:5002/health" ] # Adjust based on your health endpoint
test: [ "CMD", "curl", "-f", "http://localhost:5002/healthz/ready" ] # Adjust based on your health endpoint
interval: 10s
timeout: 5s
retries: 5
@@ -127,18 +119,11 @@ services:
eveai_chat_workers:
platform: linux/amd64
image: josakola/eveai_chat_workers:latest
# ports:
# - 5001:5001
environment:
<<: *common-variables
COMPONENT_NAME: eveai_chat_workers
volumes:
- eveai_logs:/app/logs
# healthcheck:
# test: [ "CMD", "curl", "-f", "http://localhost:5001/health" ]
# interval: 10s
# timeout: 5s
# retries: 5
networks:
- eveai-network
@@ -153,20 +138,23 @@ services:
volumes:
- eveai_logs:/app/logs
healthcheck:
test: [ "CMD", "curl", "-f", "http://localhost:5001/health" ]
test: [ "CMD", "curl", "-f", "http://localhost:5003/healthz/ready" ]
interval: 10s
timeout: 5s
retries: 5
networks:
- eveai-network
flower:
image: josakola/flower:latest
environment:
<<: *common-variables
ports:
- "5555:5555"
networks:
- eveai-network
volumes:
eveai_logs:
# miniAre theo_data:
# db-data:
# redis-data:
# tenant-files:
#secrets:
# db-password:
# file: ./db/password.txt

View File

@@ -34,6 +34,7 @@ RUN apt-get update && apt-get install -y \
build-essential \
gcc \
postgresql-client \
curl \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*

View File

@@ -34,6 +34,7 @@ RUN apt-get update && apt-get install -y \
build-essential \
gcc \
postgresql-client \
curl \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*

View File

@@ -34,6 +34,7 @@ RUN apt-get update && apt-get install -y \
build-essential \
gcc \
postgresql-client \
curl \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*

34
docker/flower/Dockerfile Normal file
View File

@@ -0,0 +1,34 @@
ARG PYTHON_VERSION=3.12.3
FROM python:${PYTHON_VERSION}-slim as base
ENV PYTHONDONTWRITEBYTECODE=1
ENV PYTHONUNBUFFERED=1
WORKDIR /app
ARG UID=10001
RUN adduser \
--disabled-password \
--gecos "" \
--home "/nonexistent" \
--shell "/bin/bash" \
--no-create-home \
--uid "${UID}" \
appuser
RUN apt-get update && apt-get install -y \
build-essential \
gcc \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
COPY requirements.txt /app/
RUN pip install --no-cache-dir -r requirements.txt
COPY . /app
COPY scripts/start_flower.sh /app/start_flower.sh
RUN chmod a+x /app/start_flower.sh
USER appuser
CMD ["/app/start_flower.sh"]

View File

@@ -39,9 +39,12 @@ def create_app(config_file=None):
# Register Necessary Extensions
register_extensions(app)
# register Blueprints
# register Namespaces
register_namespaces(api_rest)
# Register Blueprints
register_blueprints(app)
# Error handler for the API
@app.errorhandler(EveAIException)
def handle_eveai_exception(error):
@@ -73,20 +76,24 @@ def create_app(config_file=None):
app.logger.debug('Token request detected, skipping JWT verification')
return
try:
verify_jwt_in_request(optional=True)
tenant_id = get_jwt_identity()
app.logger.debug(f'Tenant ID from JWT: {tenant_id}')
# Check if this a health check request
if request.path.startswith('/_healthz') or request.path.startswith('/healthz'):
app.logger.debug('Health check request detected, skipping JWT verification')
else:
try:
verify_jwt_in_request(optional=True)
tenant_id = get_jwt_identity()
app.logger.debug(f'Tenant ID from JWT: {tenant_id}')
if tenant_id:
Database(tenant_id).switch_schema()
app.logger.debug(f'Switched to schema for tenant {tenant_id}')
else:
app.logger.debug('No tenant ID found in JWT')
except Exception as e:
app.logger.error(f'Error in before_request: {str(e)}')
# Don't raise the exception here, let the request continue
# The appropriate error handling will be done in the specific endpoints
if tenant_id:
Database(tenant_id).switch_schema()
app.logger.debug(f'Switched to schema for tenant {tenant_id}')
else:
app.logger.debug('No tenant ID found in JWT')
except Exception as e:
app.logger.error(f'Error in before_request: {str(e)}')
# Don't raise the exception here, let the request continue
# The appropriate error handling will be done in the specific endpoints
return app
@@ -102,3 +109,9 @@ def register_extensions(app):
def register_namespaces(app):
api_rest.add_namespace(document_ns, path='/api/v1/documents')
api_rest.add_namespace(auth_ns, path='/api/v1/auth')
def register_blueprints(app):
from .views.healthz_views import healthz_bp
app.register_blueprint(healthz_bp)

View File

@@ -0,0 +1,82 @@
from flask import Blueprint, current_app, request
from flask_healthz import HealthError
from sqlalchemy.exc import SQLAlchemyError
from celery.exceptions import TimeoutError as CeleryTimeoutError
from prometheus_client import Counter, Histogram, generate_latest, CONTENT_TYPE_LATEST
from common.extensions import db, metrics, minio_client
from common.utils.celery_utils import current_celery
healthz_bp = Blueprint('healthz', __name__, url_prefix='/_healthz')
# Define Prometheus metrics
api_request_counter = Counter('api_request_count', 'API Request Count', ['method', 'endpoint'])
api_request_latency = Histogram('api_request_latency_seconds', 'API Request latency')
def liveness():
try:
# Basic check to see if the app is running
return True
except Exception:
raise HealthError("Liveness check failed")
def readiness():
checks = {
"database": check_database(),
# "celery": check_celery(),
"minio": check_minio(),
# Add more checks as needed
}
if not all(checks.values()):
raise HealthError("Readiness check failed")
def check_database():
try:
# Perform a simple database query
db.session.execute("SELECT 1")
return True
except SQLAlchemyError:
current_app.logger.error("Database check failed", exc_info=True)
return False
def check_celery():
try:
# Send a simple task to Celery
result = current_celery.send_task('tasks.ping', queue='embeddings')
response = result.get(timeout=10) # Wait for up to 10 seconds for a response
return response == 'pong'
except CeleryTimeoutError:
current_app.logger.error("Celery check timed out", exc_info=True)
return False
except Exception as e:
current_app.logger.error(f"Celery check failed: {str(e)}", exc_info=True)
return False
def check_minio():
try:
# List buckets to check if MinIO is accessible
minio_client.list_buckets()
return True
except Exception as e:
current_app.logger.error(f"MinIO check failed: {str(e)}", exc_info=True)
return False
@healthz_bp.route('/metrics')
@metrics.do_not_track()
def prometheus_metrics():
return generate_latest(), 200, {'Content-Type': CONTENT_TYPE_LATEST}
def init_healtz(app):
app.config.update(
HEALTHZ={
"live": "healthz_views.liveness",
"ready": "healthz_views.readiness",
}
)

View File

@@ -7,9 +7,11 @@ from werkzeug.middleware.proxy_fix import ProxyFix
import logging.config
from common.extensions import (db, migrate, bootstrap, security, mail, login_manager, cors, csrf, session,
minio_client, simple_encryption)
minio_client, simple_encryption, metrics)
from common.models.user import User, Role, Tenant, TenantDomain
import common.models.interaction
import common.models.monitoring
import common.models.document
from common.utils.nginx_utils import prefixed_url_for
from config.logging_config import LOGGING
from common.utils.security import set_tenant_session_data
@@ -114,10 +116,10 @@ def register_extensions(app):
csrf.init_app(app)
login_manager.init_app(app)
cors.init_app(app)
# kms_client.init_app(app)
simple_encryption.init_app(app)
session.init_app(app)
minio_client.init_app(app)
metrics.init_app(app)
# Register Blueprints
@@ -132,3 +134,7 @@ def register_blueprints(app):
app.register_blueprint(security_bp)
from .views.interaction_views import interaction_bp
app.register_blueprint(interaction_bp)
from .views.healthz_views import healthz_bp, init_healtz
app.register_blueprint(healthz_bp)
init_healtz(app)

View File

@@ -1,16 +1,16 @@
{% macro render_field(field, disabled_fields=[], exclude_fields=[]) %}
{% macro render_field(field, disabled_fields=[], exclude_fields=[], class='') %}
{% set disabled = field.name in disabled_fields %}
{% set exclude_fields = exclude_fields + ['csrf_token', 'submit'] %}
{% if field.name not in exclude_fields %}
{% if field.type == 'BooleanField' %}
<div class="form-check">
{{ field(class="form-check-input", type="checkbox", id="flexSwitchCheckDefault") }}
{{ field(class="form-check-input " + class, type="checkbox", id="flexSwitchCheckDefault") }}
{{ field.label(class="form-check-label", for="flexSwitchCheckDefault", disabled=disabled) }}
</div>
{% else %}
<div class="form-group">
{{ field.label(class="form-label") }}
{{ field(class="form-control", disabled=disabled) }}
{{ field(class="form-control " + class, disabled=disabled) }}
{% if field.errors %}
<div class="invalid-feedback">
{% for error in field.errors %}

View File

@@ -13,3 +13,5 @@
<script src="{{url_for('static', filename='assets/js/plugins/anime.min.js')}}"></script>
<script src="{{url_for('static', filename='assets/js/material-kit-pro.min.js')}}?v=3.0.4 type="text/javascript"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/bootstrap/5.3.3/js/bootstrap.bundle.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/select2/4.0.13/js/select2.min.js"></script>

View File

@@ -1,22 +1,52 @@
{% extends 'base.html' %}
{% from "macros.html" import render_selectable_table, render_pagination %}
{% from "macros.html" import render_selectable_table, render_pagination, render_field %}
{% block title %}Tenant Selection{% endblock %}
{% block content_title %}Select a Tenant{% endblock %}
{% block content_description %}Select the active tenant for the current session{% endblock %}
{% block content %}
<!-- Filter Form -->
<form method="POST" action="{{ url_for('user_bp.select_tenant') }}" class="mb-4">
{{ filter_form.hidden_tag() }}
<div class="row">
<div class="col-md-4">
{{ render_field(filter_form.types, class="select2") }}
</div>
<div class="col-md-4">
{{ render_field(filter_form.search) }}
</div>
<div class="col-md-4">
{{ filter_form.submit(class="btn btn-primary") }}
</div>
</div>
</form>
<!-- Tenant Selection Form -->
<form method="POST" action="{{ url_for('user_bp.handle_tenant_selection') }}">
{{ render_selectable_table(headers=["Tenant ID", "Tenant Name", "Website"], rows=rows, selectable=True, id="tenantsTable") }}
{{ render_selectable_table(headers=["Tenant ID", "Tenant Name", "Website", "Type"], rows=rows, selectable=True, id="tenantsTable") }}
<div class="form-group mt-3">
<button type="submit" name="action" value="select_tenant" class="btn btn-primary">Set Session Tenant</button>
<button type="submit" name="action" value="edit_tenant" class="btn btn-secondary">Edit Tenant</button>
</div>
</form>
{% endblock %}
{% block content_footer %}
{{ render_pagination(pagination, 'user_bp.select_tenant') }}
{{ render_pagination(pagination, 'user_bp.select_tenant') }}
{% endblock %}
{% block scripts %}
<script>
$(document).ready(function() {
$('.select2').select2({
placeholder: "Select tenant types",
allowClear: true,
minimumResultsForSearch: Infinity, // Hides the search box
dropdownCssClass: 'select2-dropdown-hidden', // Custom class for dropdown
containerCssClass: 'select2-container-hidden' // Custom class for container
});
});
</script>
{% endblock %}

View File

@@ -10,7 +10,7 @@
<form method="post">
{{ form.hidden_tag() }}
<!-- Main Tenant Information -->
{% set main_fields = ['name', 'website', 'default_language', 'allowed_languages'] %}
{% set main_fields = ['name', 'website', 'default_language', 'allowed_languages', 'rag_context', 'type'] %}
{% for field in form %}
{{ render_included_field(field, disabled_fields=main_fields, include_fields=main_fields) }}
{% endfor %}

View File

@@ -30,7 +30,6 @@ class AddDocumentForm(FlaskForm):
user_context = TextAreaField('User Context', validators=[Optional()])
valid_from = DateField('Valid from', id='form-control datepicker', validators=[Optional()])
user_metadata = TextAreaField('User Metadata', validators=[Optional(), validate_json])
system_metadata = TextAreaField('System Metadata', validators=[Optional(), validate_json])
submit = SubmitField('Submit')
@@ -38,7 +37,8 @@ class AddDocumentForm(FlaskForm):
super().__init__()
self.language.choices = [(language, language) for language in
session.get('tenant').get('allowed_languages')]
self.language.data = session.get('tenant').get('default_language')
if not self.language.data:
self.language.data = session.get('tenant').get('default_language')
class AddURLForm(FlaskForm):
@@ -48,7 +48,6 @@ class AddURLForm(FlaskForm):
user_context = TextAreaField('User Context', validators=[Optional()])
valid_from = DateField('Valid from', id='form-control datepicker', validators=[Optional()])
user_metadata = TextAreaField('User Metadata', validators=[Optional(), validate_json])
system_metadata = TextAreaField('System Metadata', validators=[Optional(), validate_json])
submit = SubmitField('Submit')
@@ -56,7 +55,8 @@ class AddURLForm(FlaskForm):
super().__init__()
self.language.choices = [(language, language) for language in
session.get('tenant').get('allowed_languages')]
self.language.data = session.get('tenant').get('default_language')
if not self.language.data:
self.language.data = session.get('tenant').get('default_language')
class AddURLsForm(FlaskForm):
@@ -72,7 +72,8 @@ class AddURLsForm(FlaskForm):
super().__init__()
self.language.choices = [(language, language) for language in
session.get('tenant').get('allowed_languages')]
self.language.data = session.get('tenant').get('default_language')
if not self.language.data:
self.language.data = session.get('tenant').get('default_language')
class EditDocumentForm(FlaskForm):

View File

@@ -56,11 +56,9 @@ def before_request():
@roles_accepted('Super User', 'Tenant Admin')
def add_document():
form = AddDocumentForm()
current_app.logger.debug('Adding document')
if form.validate_on_submit():
try:
current_app.logger.debug('Validating file type')
tenant_id = session['tenant']['id']
file = form.file.data
filename = secure_filename(file.filename)
@@ -68,15 +66,15 @@ def add_document():
validate_file_type(extension)
current_app.logger.debug(f'Language on form: {form.language.data}')
api_input = {
'name': form.name.data,
'language': form.language.data,
'user_context': form.user_context.data,
'valid_from': form.valid_from.data,
'user_metadata': json.loads(form.user_metadata.data) if form.user_metadata.data else None,
'system_metadata': json.loads(form.system_metadata.data) if form.system_metadata.data else None
}
current_app.logger.debug(f'Creating document stack with input {api_input}')
new_doc, new_doc_vers = create_document_stack(api_input, file, filename, extension, tenant_id)
task_id = start_embedding_task(tenant_id, new_doc_vers.id)
@@ -113,7 +111,6 @@ def add_url():
'user_context': form.user_context.data,
'valid_from': form.valid_from.data,
'user_metadata': json.loads(form.user_metadata.data) if form.user_metadata.data else None,
'system_metadata': json.loads(form.system_metadata.data) if form.system_metadata.data else None
}
new_doc, new_doc_vers = create_document_stack(api_input, file_content, filename, extension, tenant_id)

View File

@@ -0,0 +1,100 @@
from flask import Blueprint, current_app, request
from flask_healthz import HealthError
from sqlalchemy.exc import SQLAlchemyError
from celery.exceptions import TimeoutError as CeleryTimeoutError
from prometheus_client import Counter, Histogram, generate_latest, CONTENT_TYPE_LATEST
import time
from common.extensions import db, metrics, minio_client
from common.utils.celery_utils import current_celery
healthz_bp = Blueprint('healthz', __name__, url_prefix='/_healthz')
# Define Prometheus metrics
api_request_counter = Counter('api_request_count', 'API Request Count', ['method', 'endpoint'])
api_request_latency = Histogram('api_request_latency_seconds', 'API Request latency')
def liveness():
try:
# Basic check to see if the app is running
return True
except Exception:
raise HealthError("Liveness check failed")
def readiness():
checks = {
"database": check_database(),
"celery": check_celery(),
"minio": check_minio(),
# Add more checks as needed
}
if not all(checks.values()):
raise HealthError("Readiness check failed")
def check_database():
try:
# Perform a simple database query
db.session.execute("SELECT 1")
return True
except SQLAlchemyError:
current_app.logger.error("Database check failed", exc_info=True)
return False
def check_celery():
try:
# Send a simple task to Celery
result = current_celery.send_task('ping', queue='embeddings')
response = result.get(timeout=10) # Wait for up to 10 seconds for a response
return response == 'pong'
except CeleryTimeoutError:
current_app.logger.error("Celery check timed out", exc_info=True)
return False
except Exception as e:
current_app.logger.error(f"Celery check failed: {str(e)}", exc_info=True)
return False
def check_minio():
try:
# List buckets to check if MinIO is accessible
minio_client.list_buckets()
return True
except Exception as e:
current_app.logger.error(f"MinIO check failed: {str(e)}", exc_info=True)
return False
@healthz_bp.route('/metrics')
@metrics.do_not_track()
def prometheus_metrics():
return generate_latest(), 200, {'Content-Type': CONTENT_TYPE_LATEST}
# Custom metrics example
@healthz_bp.before_app_request
def before_request():
request.start_time = time.time()
api_request_counter.labels(
method=request.method, endpoint=request.endpoint
).inc()
@healthz_bp.after_app_request
def after_request(response):
request_duration = time.time() - request.start_time
api_request_latency.observe(request_duration)
return response
def init_healtz(app):
app.config.update(
HEALTHZ={
"live": "healthz_views.liveness",
"ready": "healthz_views.readiness",
}
)

View File

@@ -2,7 +2,7 @@ from flask import current_app
from flask_wtf import FlaskForm
from wtforms import (StringField, PasswordField, BooleanField, SubmitField, EmailField, IntegerField, DateField,
SelectField, SelectMultipleField, FieldList, FormField, FloatField, TextAreaField)
from wtforms.validators import DataRequired, Length, Email, NumberRange, Optional
from wtforms.validators import DataRequired, Length, Email, NumberRange, Optional, ValidationError
import pytz
from common.models.user import Role
@@ -18,6 +18,8 @@ class TenantForm(FlaskForm):
timezone = SelectField('Timezone', choices=[], validators=[DataRequired()])
# RAG context
rag_context = TextAreaField('RAG Context', validators=[Optional()])
# Tenant Type
type = SelectField('Tenant Type', validators=[Optional()], default='Active')
# LLM fields
embedding_model = SelectField('Embedding Model', choices=[], validators=[DataRequired()])
llm_model = SelectField('Large Language Model', choices=[], validators=[DataRequired()])
@@ -65,6 +67,7 @@ class TenantForm(FlaskForm):
# Initialize fallback algorithms
self.fallback_algorithms.choices = \
[(algorithm, algorithm.lower()) for algorithm in current_app.config['FALLBACK_ALGORITHMS']]
self.type.choices = [(t, t) for t in current_app.config['TENANT_TYPES']]
class BaseUserForm(FlaskForm):
@@ -107,4 +110,14 @@ class TenantDomainForm(FlaskForm):
submit = SubmitField('Add Domain')
class TenantSelectionForm(FlaskForm):
types = SelectMultipleField('Tenant Types', choices=[], validators=[Optional()])
search = StringField('Search', validators=[Optional()])
submit = SubmitField('Filter')
def __init__(self, *args, **kwargs):
super(TenantSelectionForm, self).__init__(*args, **kwargs)
self.types.choices = [(t, t) for t in current_app.config['TENANT_TYPES']]

View File

@@ -10,7 +10,7 @@ import ast
from common.models.user import User, Tenant, Role, TenantDomain
from common.extensions import db, security, minio_client, simple_encryption
from common.utils.security_utils import send_confirmation_email, send_reset_email
from .user_forms import TenantForm, CreateUserForm, EditUserForm, TenantDomainForm
from .user_forms import TenantForm, CreateUserForm, EditUserForm, TenantDomainForm, TenantSelectionForm
from common.utils.database import Database
from common.utils.view_assistants import prepare_table_for_macro, form_validation_failed
from common.utils.simple_encryption import generate_api_key
@@ -129,6 +129,7 @@ def edit_tenant(tenant_id):
form.html_excluded_classes.data = ', '.join(tenant.html_excluded_classes)
if form.validate_on_submit():
current_app.logger.debug(f'Updating tenant {tenant_id}')
# Populate the tenant with form data
form.populate_obj(tenant)
# Then handle the special fields manually
@@ -148,6 +149,7 @@ def edit_tenant(tenant_id):
session['tenant'] = tenant.to_dict()
# return redirect(url_for(f"user/tenant/tenant_id"))
else:
current_app.logger.debug(f'Tenant update failed with errors: {form.errors}')
form_validation_failed(request, form)
return render_template('user/edit_tenant.html', form=form, tenant_id=tenant_id)
@@ -245,20 +247,29 @@ def edit_user(user_id):
return render_template('user/edit_user.html', form=form, user_id=user_id)
@user_bp.route('/select_tenant')
@user_bp.route('/select_tenant', methods=['GET', 'POST'])
@roles_required('Super User')
def select_tenant():
filter_form = TenantSelectionForm(request.form)
page = request.args.get('page', 1, type=int)
per_page = request.args.get('per_page', 10, type=int)
query = Tenant.query.order_by(Tenant.name) # Fetch all tenants from the database
query = Tenant.query
pagination = query.paginate(page=page, per_page=per_page)
if filter_form.validate_on_submit():
if filter_form.types.data:
query = query.filter(Tenant.type.in_(filter_form.types.data))
if filter_form.search.data:
search = f"%{filter_form.search.data}%"
query = query.filter(Tenant.name.ilike(search))
query = query.order_by(Tenant.name)
pagination = query.paginate(page=page, per_page=per_page, error_out=False)
tenants = pagination.items
rows = prepare_table_for_macro(tenants, [('id', ''), ('name', ''), ('website', '')])
rows = prepare_table_for_macro(tenants, [('id', ''), ('name', ''), ('website', ''), ('type', '')])
return render_template('user/select_tenant.html', rows=rows, pagination=pagination)
return render_template('user/select_tenant.html', rows=rows, pagination=pagination, filter_form=filter_form)
@user_bp.route('/handle_tenant_selection', methods=['POST'])

View File

@@ -3,7 +3,7 @@ import logging.config
from flask import Flask, jsonify
import os
from common.extensions import db, socketio, jwt, cors, session, simple_encryption
from common.extensions import db, socketio, jwt, cors, session, simple_encryption, metrics
from config.logging_config import LOGGING
from eveai_chat.socket_handlers import chat_handler
from common.utils.cors_utils import create_cors_after_request
@@ -32,17 +32,6 @@ def create_app(config_file=None):
app.celery = make_celery(app.name, app.config)
init_celery(app.celery, app)
# Register Blueprints
# register_blueprints(app)
@app.route('/ping')
def ping():
return 'pong'
@app.route('/health', methods=['GET'])
def health():
return jsonify({'status': 'ok'}), 200
app.logger.info("EveAI Chat Server Started Successfully")
app.logger.info("-------------------------------------------------------------------------------------------------")
return app
@@ -61,8 +50,8 @@ def register_extensions(app):
ping_interval=app.config.get('SOCKETIO_PING_INTERVAL'),
)
jwt.init_app(app)
# kms_client.init_app(app)
simple_encryption.init_app(app)
metrics.init_app(app)
# Cors setup
cors.init_app(app, resources={r"/chat/*": {"origins": "*"}})
@@ -72,5 +61,5 @@ def register_extensions(app):
def register_blueprints(app):
from .views.chat_views import chat_bp
app.register_blueprint(chat_bp)
from views.healthz_views import healthz_bp
app.register_blueprint(healthz_bp)

View File

@@ -1,10 +1,13 @@
import uuid
from functools import wraps
from flask_jwt_extended import create_access_token, get_jwt_identity, verify_jwt_in_request, decode_token
from flask_socketio import emit, disconnect, join_room, leave_room
from flask import current_app, request, session
from sqlalchemy.exc import SQLAlchemyError
from datetime import datetime, timedelta
from prometheus_client import Counter, Histogram
from time import time
from common.extensions import socketio, db, simple_encryption
from common.models.user import Tenant
@@ -12,8 +15,27 @@ from common.models.interaction import Interaction
from common.utils.celery_utils import current_celery
from common.utils.database import Database
# Define custom metrics
socketio_message_counter = Counter('socketio_message_count', 'Count of SocketIO messages', ['event_type'])
socketio_message_latency = Histogram('socketio_message_latency_seconds', 'Latency of SocketIO message processing', ['event_type'])
# Decorator to measure SocketIO events
def track_socketio_event(func):
@wraps(func)
def wrapper(*args, **kwargs):
event_type = func.__name__
socketio_message_counter.labels(event_type=event_type).inc()
start_time = time()
result = func(*args, **kwargs)
latency = time() - start_time
socketio_message_latency.labels(event_type=event_type).observe(latency)
return result
return wrapper
@socketio.on('connect')
@track_socketio_event
def handle_connect():
try:
current_app.logger.debug(f'SocketIO: Connection handling started using {request.args}')
@@ -58,6 +80,7 @@ def handle_connect():
@socketio.on('disconnect')
@track_socketio_event
def handle_disconnect():
room = session.get('room')
if room:

View File

@@ -1,77 +0,0 @@
from datetime import datetime as dt, timezone as tz
from flask import request, redirect, url_for, render_template, Blueprint, session, current_app, jsonify
from flask_security import hash_password, roles_required, roles_accepted
from sqlalchemy.exc import SQLAlchemyError
from flask_jwt_extended import create_access_token, jwt_required, get_jwt_identity
from flask_socketio import emit, join_room, leave_room
import ast
from common.models.user import User, Tenant
from common.models.interaction import ChatSession, Interaction, InteractionEmbedding
from common.models.document import Embedding
from common.extensions import db, socketio, kms_client
from common.utils.database import Database
chat_bp = Blueprint('chat_bp', __name__, url_prefix='/chat')
@chat_bp.route('/register_client', methods=['POST'])
def register_client():
tenant_id = request.json.get('tenant_id')
api_key = request.json.get('api_key')
# Validate tenant_id and api_key here (e.g., check against the database)
if validate_tenant(tenant_id, api_key):
access_token = create_access_token(identity={'tenant_id': tenant_id, 'api_key': api_key})
current_app.logger.debug(f'Tenant Registration: Tenant {tenant_id} registered successfully')
return jsonify({'token': access_token}), 200
else:
current_app.logger.debug(f'Tenant Registration: Invalid tenant_id ({tenant_id}) or api_key ({api_key})')
return jsonify({'message': 'Invalid credentials'}), 401
@socketio.on('connect', namespace='/chat')
@jwt_required()
def handle_connect():
current_tenant = get_jwt_identity()
current_app.logger.debug(f'Tenant {current_tenant["tenant_id"]} connected')
@socketio.on('message', namespace='/chat')
@jwt_required()
def handle_message(data):
current_tenant = get_jwt_identity()
current_app.logger.debug(f'Tenant {current_tenant["tenant_id"]} sent a message: {data}')
# Store interaction in the database
emit('response', {'data': 'Message received'}, broadcast=True)
def validate_tenant(tenant_id, api_key):
tenant = Tenant.query.get_or_404(tenant_id)
encrypted_api_key = ast.literal_eval(tenant.encrypted_chat_api_key)
decrypted_api_key = kms_client.decrypt_api_key(encrypted_api_key)
return decrypted_api_key == api_key
# @chat_bp.route('/', methods=['GET', 'POST'])
# def chat():
# return render_template('chat.html')
#
#
# @chat.record_once
# def on_register(state):
# # TODO: write initialisation code when the blueprint is registered (only once)
# # socketio.init_app(state.app)
# pass
#
#
# @socketio.on('message', namespace='/chat')
# def handle_message(message):
# # TODO: write message handling code to actually realise chat
# # print('Received message:', message)
# # socketio.emit('response', {'data': message}, namespace='/chat')
# pass

View File

@@ -0,0 +1,70 @@
from flask import Blueprint, current_app, request
from flask_healthz import HealthError
from sqlalchemy.exc import SQLAlchemyError
from celery.exceptions import TimeoutError as CeleryTimeoutError
from common.extensions import db, metrics, minio_client
from common.utils.celery_utils import current_celery
from eveai_chat.socket_handlers.chat_handler import socketio_message_counter, socketio_message_latency
healthz_bp = Blueprint('healthz', __name__, url_prefix='/_healthz')
def liveness():
try:
# Basic check to see if the app is running
return True
except Exception:
raise HealthError("Liveness check failed")
def readiness():
checks = {
"database": check_database(),
"celery": check_celery(),
# Add more checks as needed
}
if not all(checks.values()):
raise HealthError("Readiness check failed")
def check_database():
try:
# Perform a simple database query
db.session.execute("SELECT 1")
return True
except SQLAlchemyError:
current_app.logger.error("Database check failed", exc_info=True)
return False
def check_celery():
try:
# Send a simple task to Celery
result = current_celery.send_task('ping', queue='llm_interactions')
response = result.get(timeout=10) # Wait for up to 10 seconds for a response
return response == 'pong'
except CeleryTimeoutError:
current_app.logger.error("Celery check timed out", exc_info=True)
return False
except Exception as e:
current_app.logger.error(f"Celery check failed: {str(e)}", exc_info=True)
return False
@healthz_bp.route('/metrics')
@metrics.do_not_track()
def prometheus_metrics():
return metrics.generate_latest()
def init_healtz(app):
app.config.update(
HEALTHZ={
"live": "healthz_views.liveness",
"ready": "healthz_views.readiness",
}
)
# Register SocketIO metrics with Prometheus
metrics.register(socketio_message_counter)
metrics.register(socketio_message_latency)

View File

@@ -22,12 +22,23 @@ from common.models.interaction import ChatSession, Interaction, InteractionEmbed
from common.extensions import db
from common.utils.celery_utils import current_celery
from common.utils.model_utils import select_model_variables, create_language_template, replace_variable_in_template
from common.langchain.EveAIRetriever import EveAIRetriever
from common.langchain.EveAIHistoryRetriever import EveAIHistoryRetriever
from common.langchain.eveai_retriever import EveAIRetriever
from common.langchain.eveai_history_retriever import EveAIHistoryRetriever
from common.utils.business_event import BusinessEvent
from common.utils.business_event_context import current_event
# Healthcheck task
@current_celery.task(name='ping', queue='llm_interactions')
def ping():
return 'pong'
def detail_question(question, language, model_variables, session_id):
retriever = EveAIHistoryRetriever(model_variables, session_id)
current_app.logger.debug(f'Detail question: {question}')
current_app.logger.debug(f'model_varialbes: {model_variables}')
current_app.logger.debug(f'session_id: {session_id}')
retriever = EveAIHistoryRetriever(model_variables=model_variables, session_id=session_id)
llm = model_variables['llm']
template = model_variables['history_template']
language_template = create_language_template(template, language)
@@ -56,53 +67,56 @@ def ask_question(tenant_id, question, language, session_id, user_timezone, room)
'interaction_id': 'interaction_id_value'
}
"""
current_app.logger.info(f'ask_question: Received question for tenant {tenant_id}: {question}. Processing...')
with BusinessEvent("Ask Question", tenant_id=tenant_id, chat_session_id=session_id):
current_app.logger.info(f'ask_question: Received question for tenant {tenant_id}: {question}. Processing...')
try:
# Retrieve the tenant
tenant = Tenant.query.get(tenant_id)
if not tenant:
raise Exception(f'Tenant {tenant_id} not found.')
try:
# Retrieve the tenant
tenant = Tenant.query.get(tenant_id)
if not tenant:
raise Exception(f'Tenant {tenant_id} not found.')
# Ensure we are working in the correct database schema
Database(tenant_id).switch_schema()
# Ensure we are working in the correct database schema
Database(tenant_id).switch_schema()
# Ensure we have a session to story history
chat_session = ChatSession.query.filter_by(session_id=session_id).first()
if not chat_session:
try:
chat_session = ChatSession()
chat_session.session_id = session_id
chat_session.session_start = dt.now(tz.utc)
chat_session.timezone = user_timezone
db.session.add(chat_session)
db.session.commit()
except SQLAlchemyError as e:
current_app.logger.error(f'ask_question: Error initializing chat session in database: {e}')
raise
# Ensure we have a session to story history
chat_session = ChatSession.query.filter_by(session_id=session_id).first()
if not chat_session:
try:
chat_session = ChatSession()
chat_session.session_id = session_id
chat_session.session_start = dt.now(tz.utc)
chat_session.timezone = user_timezone
db.session.add(chat_session)
db.session.commit()
except SQLAlchemyError as e:
current_app.logger.error(f'ask_question: Error initializing chat session in database: {e}')
raise
if tenant.rag_tuning:
current_app.rag_tuning_logger.debug(f'Received question for tenant {tenant_id}:\n{question}. Processing...')
current_app.rag_tuning_logger.debug(f'Tenant Information: \n{tenant.to_dict()}')
current_app.rag_tuning_logger.debug(f'===================================================================')
current_app.rag_tuning_logger.debug(f'===================================================================')
if tenant.rag_tuning:
current_app.rag_tuning_logger.debug(f'Received question for tenant {tenant_id}:\n{question}. Processing...')
current_app.rag_tuning_logger.debug(f'Tenant Information: \n{tenant.to_dict()}')
current_app.rag_tuning_logger.debug(f'===================================================================')
current_app.rag_tuning_logger.debug(f'===================================================================')
result, interaction = answer_using_tenant_rag(question, language, tenant, chat_session)
result['algorithm'] = current_app.config['INTERACTION_ALGORITHMS']['RAG_TENANT']['name']
result['interaction_id'] = interaction.id
result['room'] = room # Include the room in the result
if result['insufficient_info']:
if 'LLM' in tenant.fallback_algorithms:
result, interaction = answer_using_llm(question, language, tenant, chat_session)
result['algorithm'] = current_app.config['INTERACTION_ALGORITHMS']['LLM']['name']
with current_event.create_span("RAG Answer"):
result, interaction = answer_using_tenant_rag(question, language, tenant, chat_session)
result['algorithm'] = current_app.config['INTERACTION_ALGORITHMS']['RAG_TENANT']['name']
result['interaction_id'] = interaction.id
result['room'] = room # Include the room in the result
return result
except Exception as e:
current_app.logger.error(f'ask_question: Error processing question: {e}')
raise
if result['insufficient_info']:
if 'LLM' in tenant.fallback_algorithms:
with current_event.create_span("Fallback Algorithm LLM"):
result, interaction = answer_using_llm(question, language, tenant, chat_session)
result['algorithm'] = current_app.config['INTERACTION_ALGORITHMS']['LLM']['name']
result['interaction_id'] = interaction.id
result['room'] = room # Include the room in the result
return result
except Exception as e:
current_app.logger.error(f'ask_question: Error processing question: {e}')
raise
def answer_using_tenant_rag(question, language, tenant, chat_session):
@@ -122,92 +136,94 @@ def answer_using_tenant_rag(question, language, tenant, chat_session):
# Langchain debugging if required
# set_debug(True)
detailed_question = detail_question(question, language, model_variables, chat_session.session_id)
current_app.logger.debug(f'Original question:\n {question}\n\nDetailed question: {detailed_question}')
if tenant.rag_tuning:
current_app.rag_tuning_logger.debug(f'Detailed Question for tenant {tenant.id}:\n{question}.')
current_app.rag_tuning_logger.debug(f'-------------------------------------------------------------------')
new_interaction.detailed_question = detailed_question
new_interaction.detailed_question_at = dt.now(tz.utc)
retriever = EveAIRetriever(model_variables, tenant_info)
llm = model_variables['llm']
template = model_variables['rag_template']
language_template = create_language_template(template, language)
full_template = replace_variable_in_template(language_template, "{tenant_context}", model_variables['rag_context'])
rag_prompt = ChatPromptTemplate.from_template(full_template)
setup_and_retrieval = RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
if tenant.rag_tuning:
current_app.rag_tuning_logger.debug(f'Full prompt for tenant {tenant.id}:\n{full_template}.')
current_app.rag_tuning_logger.debug(f'-------------------------------------------------------------------')
new_interaction_embeddings = []
if not model_variables['cited_answer_cls']: # The model doesn't support structured feedback
output_parser = StrOutputParser()
chain = setup_and_retrieval | rag_prompt | llm | output_parser
# Invoke the chain with the actual question
answer = chain.invoke(detailed_question)
new_interaction.answer = answer
result = {
'answer': answer,
'citations': [],
'insufficient_info': False
}
else: # The model supports structured feedback
structured_llm = llm.with_structured_output(model_variables['cited_answer_cls'])
chain = setup_and_retrieval | rag_prompt | structured_llm
result = chain.invoke(detailed_question).dict()
current_app.logger.debug(f'ask_question: result answer: {result['answer']}')
current_app.logger.debug(f'ask_question: result citations: {result["citations"]}')
current_app.logger.debug(f'ask_question: insufficient information: {result["insufficient_info"]}')
with current_event.create_span("Detail Question"):
detailed_question = detail_question(question, language, model_variables, chat_session.session_id)
current_app.logger.debug(f'Original question:\n {question}\n\nDetailed question: {detailed_question}')
if tenant.rag_tuning:
current_app.rag_tuning_logger.debug(f'ask_question: result answer: {result['answer']}')
current_app.rag_tuning_logger.debug(f'ask_question: result citations: {result["citations"]}')
current_app.rag_tuning_logger.debug(f'ask_question: insufficient information: {result["insufficient_info"]}')
current_app.rag_tuning_logger.debug(f'Detailed Question for tenant {tenant.id}:\n{question}.')
current_app.rag_tuning_logger.debug(f'-------------------------------------------------------------------')
new_interaction.answer = result['answer']
new_interaction.detailed_question = detailed_question
new_interaction.detailed_question_at = dt.now(tz.utc)
# Filter out the existing Embedding IDs
given_embedding_ids = [int(emb_id) for emb_id in result['citations']]
embeddings = (
db.session.query(Embedding)
.filter(Embedding.id.in_(given_embedding_ids))
.all()
)
existing_embedding_ids = [emb.id for emb in embeddings]
urls = list(set(emb.document_version.url for emb in embeddings))
with current_event.create_span("Generate Answer using RAG"):
retriever = EveAIRetriever(model_variables, tenant_info)
llm = model_variables['llm']
template = model_variables['rag_template']
language_template = create_language_template(template, language)
full_template = replace_variable_in_template(language_template, "{tenant_context}", model_variables['rag_context'])
rag_prompt = ChatPromptTemplate.from_template(full_template)
setup_and_retrieval = RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
if tenant.rag_tuning:
current_app.rag_tuning_logger.debug(f'Referenced documents for answer for tenant {tenant.id}:\n')
current_app.rag_tuning_logger.debug(f'{urls}')
current_app.rag_tuning_logger.debug(f'Full prompt for tenant {tenant.id}:\n{full_template}.')
current_app.rag_tuning_logger.debug(f'-------------------------------------------------------------------')
for emb_id in existing_embedding_ids:
new_interaction_embedding = InteractionEmbedding(embedding_id=emb_id)
new_interaction_embedding.interaction = new_interaction
new_interaction_embeddings.append(new_interaction_embedding)
new_interaction_embeddings = []
if not model_variables['cited_answer_cls']: # The model doesn't support structured feedback
output_parser = StrOutputParser()
result['citations'] = urls
chain = setup_and_retrieval | rag_prompt | llm | output_parser
# Disable langchain debugging if set above.
# set_debug(False)
# Invoke the chain with the actual question
answer = chain.invoke(detailed_question)
new_interaction.answer = answer
result = {
'answer': answer,
'citations': [],
'insufficient_info': False
}
new_interaction.answer_at = dt.now(tz.utc)
chat_session.session_end = dt.now(tz.utc)
else: # The model supports structured feedback
structured_llm = llm.with_structured_output(model_variables['cited_answer_cls'])
try:
db.session.add(chat_session)
db.session.add(new_interaction)
db.session.add_all(new_interaction_embeddings)
db.session.commit()
return result, new_interaction
except SQLAlchemyError as e:
current_app.logger.error(f'ask_question: Error saving interaction to database: {e}')
raise
chain = setup_and_retrieval | rag_prompt | structured_llm
result = chain.invoke(detailed_question).dict()
current_app.logger.debug(f'ask_question: result answer: {result['answer']}')
current_app.logger.debug(f'ask_question: result citations: {result["citations"]}')
current_app.logger.debug(f'ask_question: insufficient information: {result["insufficient_info"]}')
if tenant.rag_tuning:
current_app.rag_tuning_logger.debug(f'ask_question: result answer: {result['answer']}')
current_app.rag_tuning_logger.debug(f'ask_question: result citations: {result["citations"]}')
current_app.rag_tuning_logger.debug(f'ask_question: insufficient information: {result["insufficient_info"]}')
current_app.rag_tuning_logger.debug(f'-------------------------------------------------------------------')
new_interaction.answer = result['answer']
# Filter out the existing Embedding IDs
given_embedding_ids = [int(emb_id) for emb_id in result['citations']]
embeddings = (
db.session.query(Embedding)
.filter(Embedding.id.in_(given_embedding_ids))
.all()
)
existing_embedding_ids = [emb.id for emb in embeddings]
urls = list(set(emb.document_version.url for emb in embeddings))
if tenant.rag_tuning:
current_app.rag_tuning_logger.debug(f'Referenced documents for answer for tenant {tenant.id}:\n')
current_app.rag_tuning_logger.debug(f'{urls}')
current_app.rag_tuning_logger.debug(f'-------------------------------------------------------------------')
for emb_id in existing_embedding_ids:
new_interaction_embedding = InteractionEmbedding(embedding_id=emb_id)
new_interaction_embedding.interaction = new_interaction
new_interaction_embeddings.append(new_interaction_embedding)
result['citations'] = urls
# Disable langchain debugging if set above.
# set_debug(False)
new_interaction.answer_at = dt.now(tz.utc)
chat_session.session_end = dt.now(tz.utc)
try:
db.session.add(chat_session)
db.session.add(new_interaction)
db.session.add_all(new_interaction_embeddings)
db.session.commit()
return result, new_interaction
except SQLAlchemyError as e:
current_app.logger.error(f'ask_question: Error saving interaction to database: {e}')
raise
def answer_using_llm(question, language, tenant, chat_session):
@@ -227,47 +243,49 @@ def answer_using_llm(question, language, tenant, chat_session):
# Langchain debugging if required
# set_debug(True)
detailed_question = detail_question(question, language, model_variables, chat_session.session_id)
current_app.logger.debug(f'Original question:\n {question}\n\nDetailed question: {detailed_question}')
new_interaction.detailed_question = detailed_question
new_interaction.detailed_question_at = dt.now(tz.utc)
with current_event.create_span("Detail Question"):
detailed_question = detail_question(question, language, model_variables, chat_session.session_id)
current_app.logger.debug(f'Original question:\n {question}\n\nDetailed question: {detailed_question}')
new_interaction.detailed_question = detailed_question
new_interaction.detailed_question_at = dt.now(tz.utc)
retriever = EveAIRetriever(model_variables, tenant_info)
llm = model_variables['llm_no_rag']
template = model_variables['encyclopedia_template']
language_template = create_language_template(template, language)
rag_prompt = ChatPromptTemplate.from_template(language_template)
setup = RunnablePassthrough()
output_parser = StrOutputParser()
with current_event.create_span("Detail Answer using LLM"):
retriever = EveAIRetriever(model_variables, tenant_info)
llm = model_variables['llm_no_rag']
template = model_variables['encyclopedia_template']
language_template = create_language_template(template, language)
rag_prompt = ChatPromptTemplate.from_template(language_template)
setup = RunnablePassthrough()
output_parser = StrOutputParser()
new_interaction_embeddings = []
new_interaction_embeddings = []
chain = setup | rag_prompt | llm | output_parser
input_question = {"question": detailed_question}
chain = setup | rag_prompt | llm | output_parser
input_question = {"question": detailed_question}
# Invoke the chain with the actual question
answer = chain.invoke(input_question)
new_interaction.answer = answer
result = {
'answer': answer,
'citations': [],
'insufficient_info': False
}
# Invoke the chain with the actual question
answer = chain.invoke(input_question)
new_interaction.answer = answer
result = {
'answer': answer,
'citations': [],
'insufficient_info': False
}
# Disable langchain debugging if set above.
# set_debug(False)
# Disable langchain debugging if set above.
# set_debug(False)
new_interaction.answer_at = dt.now(tz.utc)
chat_session.session_end = dt.now(tz.utc)
new_interaction.answer_at = dt.now(tz.utc)
chat_session.session_end = dt.now(tz.utc)
try:
db.session.add(chat_session)
db.session.add(new_interaction)
db.session.commit()
return result, new_interaction
except SQLAlchemyError as e:
current_app.logger.error(f'ask_question: Error saving interaction to database: {e}')
raise
try:
db.session.add(chat_session)
db.session.add(new_interaction)
db.session.commit()
return result, new_interaction
except SQLAlchemyError as e:
current_app.logger.error(f'ask_question: Error saving interaction to database: {e}')
raise
def tasks_ping():

View File

@@ -1,45 +1,37 @@
import io
import os
from pydub import AudioSegment
import tempfile
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from common.extensions import minio_client
from common.utils.model_utils import create_language_template
from .processor import Processor
import subprocess
from .transcription_processor import TranscriptionProcessor
from common.utils.business_event_context import current_event
class AudioProcessor(Processor):
class AudioProcessor(TranscriptionProcessor):
def __init__(self, tenant, model_variables, document_version):
super().__init__(tenant, model_variables, document_version)
self.transcription_client = model_variables['transcription_client']
self.transcription_model = model_variables['transcription_model']
self.ffmpeg_path = 'ffmpeg'
def _get_transcription(self):
file_data = minio_client.download_document_file(
self.tenant.id,
self.document_version.doc_id,
self.document_version.language,
self.document_version.id,
self.document_version.file_name
)
def process(self):
self._log("Starting Audio processing")
try:
file_data = minio_client.download_document_file(
self.tenant.id,
self.document_version.doc_id,
self.document_version.language,
self.document_version.id,
self.document_version.file_name
)
with current_event.create_span("Audio Processing"):
compressed_audio = self._compress_audio(file_data)
with current_event.create_span("Transcription Generation"):
transcription = self._transcribe_audio(compressed_audio)
markdown, title = self._generate_markdown_from_transcription(transcription)
self._save_markdown(markdown)
self._log("Finished processing Audio")
return markdown, title
except Exception as e:
self._log(f"Error processing Audio: {str(e)}", level='error')
raise
return transcription
def _compress_audio(self, audio_data):
self._log("Compressing audio")
@@ -159,29 +151,3 @@ class AudioProcessor(Processor):
return full_transcription
def _generate_markdown_from_transcription(self, transcription):
self._log("Generating markdown from transcription")
llm = self.model_variables['llm']
template = self.model_variables['transcript_template']
language_template = create_language_template(template, self.document_version.language)
transcript_prompt = ChatPromptTemplate.from_template(language_template)
setup = RunnablePassthrough()
output_parser = StrOutputParser()
chain = setup | transcript_prompt | llm | output_parser
input_transcript = {'transcript': transcription}
markdown = chain.invoke(input_transcript)
# Extract title from the markdown
title = self._extract_title_from_markdown(markdown)
return markdown, title
def _extract_title_from_markdown(self, markdown):
# Simple extraction of the first header as the title
lines = markdown.split('\n')
for line in lines:
if line.startswith('# '):
return line[2:].strip()
return "Untitled Audio Transcription"

View File

@@ -5,6 +5,7 @@ from langchain_core.runnables import RunnablePassthrough
from common.extensions import db, minio_client
from common.utils.model_utils import create_language_template
from .processor import Processor
from common.utils.business_event_context import current_event
class HTMLProcessor(Processor):
@@ -14,6 +15,9 @@ class HTMLProcessor(Processor):
self.html_end_tags = model_variables['html_end_tags']
self.html_included_elements = model_variables['html_included_elements']
self.html_excluded_elements = model_variables['html_excluded_elements']
self.chunk_size = model_variables['processing_chunk_size'] # Adjust this based on your LLM's optimal input size
self.chunk_overlap = model_variables[
'processing_chunk_overlap'] # Adjust for context preservation between chunks
def process(self):
self._log("Starting HTML processing")
@@ -27,8 +31,10 @@ class HTMLProcessor(Processor):
)
html_content = file_data.decode('utf-8')
extracted_html, title = self._parse_html(html_content)
markdown = self._generate_markdown_from_html(extracted_html)
with current_event.create_span("HTML Content Extraction"):
extracted_html, title = self._parse_html(html_content)
with current_event.create_span("Markdown Generation"):
markdown = self._generate_markdown_from_html(extracted_html)
self._save_markdown(markdown)
self._log("Finished processing HTML")
@@ -70,7 +76,7 @@ class HTMLProcessor(Processor):
chain = setup | parse_prompt | llm | output_parser
soup = BeautifulSoup(html_content, 'lxml')
chunks = self._split_content(soup)
chunks = self._split_content(soup, self.chunk_size)
markdown_chunks = []
for chunk in chunks:

View File

@@ -10,16 +10,17 @@ from langchain_core.runnables import RunnablePassthrough
from common.extensions import minio_client
from common.utils.model_utils import create_language_template
from .processor import Processor
from common.utils.business_event_context import current_event
class PDFProcessor(Processor):
def __init__(self, tenant, model_variables, document_version):
super().__init__(tenant, model_variables, document_version)
# PDF-specific initialization
self.chunk_size = model_variables['PDF_chunk_size']
self.chunk_overlap = model_variables['PDF_chunk_overlap']
self.min_chunk_size = model_variables['PDF_min_chunk_size']
self.max_chunk_size = model_variables['PDF_max_chunk_size']
self.chunk_size = model_variables['processing_chunk_size']
self.chunk_overlap = model_variables['processing_chunk_overlap']
self.min_chunk_size = model_variables['processing_min_chunk_size']
self.max_chunk_size = model_variables['processing_max_chunk_size']
def process(self):
self._log("Starting PDF processing")
@@ -32,13 +33,14 @@ class PDFProcessor(Processor):
self.document_version.file_name
)
extracted_content = self._extract_content(file_data)
structured_content, title = self._structure_content(extracted_content)
with current_event.create_span("PDF Extraction"):
extracted_content = self._extract_content(file_data)
structured_content, title = self._structure_content(extracted_content)
llm_chunks = self._split_content_for_llm(structured_content)
markdown = self._process_chunks_with_llm(llm_chunks)
self._save_markdown(markdown)
with current_event.create_span("Markdown Generation"):
llm_chunks = self._split_content_for_llm(structured_content)
markdown = self._process_chunks_with_llm(llm_chunks)
self._save_markdown(markdown)
self._log("Finished processing PDF")
return markdown, title
except Exception as e:
@@ -228,12 +230,7 @@ class PDFProcessor(Processor):
for chunk in chunks:
input = {"pdf_content": chunk}
result = chain.invoke(input)
# Remove Markdown code block delimiters if present
result = result.strip()
if result.startswith("```markdown"):
result = result[len("```markdown"):].strip()
if result.endswith("```"):
result = result[:-3].strip()
result = self._clean_markdown(result)
markdown_chunks.append(result)
return "\n\n".join(markdown_chunks)

View File

@@ -40,3 +40,13 @@ class Processor(ABC):
filename,
content.encode('utf-8')
)
def _clean_markdown(self, markdown):
markdown = markdown.strip()
if markdown.startswith("```markdown"):
markdown = markdown[len("```markdown"):].strip()
if markdown.endswith("```"):
markdown = markdown[:-3].strip()
return markdown

View File

@@ -1,37 +1,19 @@
import re
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from common.extensions import minio_client
from common.utils.model_utils import create_language_template
from .processor import Processor
from .transcription_processor import TranscriptionProcessor
import re
class SRTProcessor(Processor):
def __init__(self, tenant, model_variables, document_version):
super().__init__(tenant, model_variables, document_version)
def process(self):
self._log("Starting SRT processing")
try:
file_data = minio_client.download_document_file(
self.tenant.id,
self.document_version.doc_id,
self.document_version.language,
self.document_version.id,
self.document_version.file_name
)
srt_content = file_data.decode('utf-8')
cleaned_transcription = self._clean_srt(srt_content)
markdown, title = self._generate_markdown_from_transcription(cleaned_transcription)
self._save_markdown(markdown)
self._log("Finished processing SRT")
return markdown, title
except Exception as e:
self._log(f"Error processing SRT: {str(e)}", level='error')
raise
class SRTProcessor(TranscriptionProcessor):
def _get_transcription(self):
file_data = minio_client.download_document_file(
self.tenant.id,
self.document_version.doc_id,
self.document_version.language,
self.document_version.id,
self.document_version.file_name
)
srt_content = file_data.decode('utf-8')
return self._clean_srt(srt_content)
def _clean_srt(self, srt_content):
# Remove timecodes and subtitle numbers
@@ -50,31 +32,3 @@ class SRTProcessor(Processor):
return cleaned_text
def _generate_markdown_from_transcription(self, transcription):
self._log("Generating markdown from transcription")
llm = self.model_variables['llm']
template = self.model_variables['transcript_template']
language_template = create_language_template(template, self.document_version.language)
transcript_prompt = ChatPromptTemplate.from_template(language_template)
setup = RunnablePassthrough()
output_parser = StrOutputParser()
chain = setup | transcript_prompt | llm | output_parser
input_transcript = {'transcript': transcription}
markdown = chain.invoke(input_transcript)
# Extract title from the markdown
title = self._extract_title_from_markdown(markdown)
return markdown, title
def _extract_title_from_markdown(self, markdown):
# Simple extraction of the first header as the title
lines = markdown.split('\n')
for line in lines:
if line.startswith('# '):
return line[2:].strip()
return "Untitled SRT Transcription"

View File

@@ -0,0 +1,94 @@
# transcription_processor.py
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from common.utils.model_utils import create_language_template
from .processor import Processor
from common.utils.business_event_context import current_event
class TranscriptionProcessor(Processor):
def __init__(self, tenant, model_variables, document_version):
super().__init__(tenant, model_variables, document_version)
self.chunk_size = model_variables['processing_chunk_size']
self.chunk_overlap = model_variables['processing_chunk_overlap']
def process(self):
self._log("Starting Transcription processing")
try:
with current_event.create_span("Transcription Generation"):
transcription = self._get_transcription()
with current_event.create_span("Markdown Generation"):
chunks = self._chunk_transcription(transcription)
markdown_chunks = self._process_chunks(chunks)
full_markdown = self._combine_markdown_chunks(markdown_chunks)
self._save_markdown(full_markdown)
self._log("Finished processing Transcription")
return full_markdown, self._extract_title_from_markdown(full_markdown)
except Exception as e:
self._log(f"Error processing Transcription: {str(e)}", level='error')
raise
def _get_transcription(self):
# This method should be implemented by child classes
raise NotImplementedError
def _chunk_transcription(self, transcription):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=self.chunk_size,
chunk_overlap=self.chunk_overlap,
length_function=len,
separators=["\n\n", "\n", " ", ""]
)
return text_splitter.split_text(transcription)
def _process_chunks(self, chunks):
self._log("Generating markdown from transcription")
llm = self.model_variables['llm']
template = self.model_variables['transcript_template']
language_template = create_language_template(template, self.document_version.language)
transcript_prompt = ChatPromptTemplate.from_template(language_template)
setup = RunnablePassthrough()
output_parser = StrOutputParser()
chain = setup | transcript_prompt | llm | output_parser
markdown_chunks = []
previous_part = ""
for i, chunk in enumerate(chunks):
self._log(f"Processing chunk {i + 1} of {len(chunks)}")
self._log(f"Previous part: {previous_part}")
input_transcript = {
'transcript': chunk,
'previous_part': previous_part
}
markdown = chain.invoke(input_transcript)
markdown = self._clean_markdown(markdown)
markdown_chunks.append(markdown)
# Extract the last part for the next iteration
lines = markdown.split('\n')
last_header = None
for line in reversed(lines):
if line.startswith('#'):
last_header = line
break
if last_header:
header_index = lines.index(last_header)
previous_part = '\n'.join(lines[header_index:])
else:
previous_part = lines[-1] if lines else ""
return markdown_chunks
def _combine_markdown_chunks(self, markdown_chunks):
return "\n\n".join(markdown_chunks)
def _extract_title_from_markdown(self, markdown):
lines = markdown.split('\n')
for line in lines:
if line.startswith('# '):
return line[2:].strip()
return "Untitled Transcription"

View File

@@ -24,79 +24,90 @@ from eveai_workers.Processors.html_processor import HTMLProcessor
from eveai_workers.Processors.pdf_processor import PDFProcessor
from eveai_workers.Processors.srt_processor import SRTProcessor
from common.utils.business_event import BusinessEvent
from common.utils.business_event_context import current_event
# Healthcheck task
@current_celery.task(name='ping', queue='embeddings')
def ping():
return 'pong'
@current_celery.task(name='create_embeddings', queue='embeddings')
def create_embeddings(tenant_id, document_version_id):
current_app.logger.info(f'Creating embeddings for tenant {tenant_id} on document version {document_version_id}.')
# BusinessEvent creates a context, which is why we need to use it with a with block
with BusinessEvent('Create Embeddings', tenant_id, document_version_id=document_version_id):
current_app.logger.info(f'Creating embeddings for tenant {tenant_id} on document version {document_version_id}')
try:
# Retrieve Tenant for which we are processing
tenant = Tenant.query.get(tenant_id)
if tenant is None:
raise Exception(f'Tenant {tenant_id} not found')
try:
# Retrieve Tenant for which we are processing
tenant = Tenant.query.get(tenant_id)
if tenant is None:
raise Exception(f'Tenant {tenant_id} not found')
# Ensure we are working in the correct database schema
Database(tenant_id).switch_schema()
# Ensure we are working in the correct database schema
Database(tenant_id).switch_schema()
# Select variables to work with depending on tenant and model
model_variables = select_model_variables(tenant)
current_app.logger.debug(f'Model variables: {model_variables}')
# Select variables to work with depending on tenant and model
model_variables = select_model_variables(tenant)
current_app.logger.debug(f'Model variables: {model_variables}')
# Retrieve document version to process
document_version = DocumentVersion.query.get(document_version_id)
if document_version is None:
raise Exception(f'Document version {document_version_id} not found')
# Retrieve document version to process
document_version = DocumentVersion.query.get(document_version_id)
if document_version is None:
raise Exception(f'Document version {document_version_id} not found')
except Exception as e:
current_app.logger.error(f'Create Embeddings request received '
f'for non existing document version {document_version_id} '
f'for tenant {tenant_id}, '
f'error: {e}')
raise
except Exception as e:
current_app.logger.error(f'Create Embeddings request received '
f'for non existing document version {document_version_id} '
f'for tenant {tenant_id}, '
f'error: {e}')
raise
try:
db.session.add(document_version)
try:
db.session.add(document_version)
# start processing
document_version.processing = True
document_version.processing_started_at = dt.now(tz.utc)
document_version.processing_finished_at = None
document_version.processing_error = None
# start processing
document_version.processing = True
document_version.processing_started_at = dt.now(tz.utc)
document_version.processing_finished_at = None
document_version.processing_error = None
db.session.commit()
except SQLAlchemyError as e:
current_app.logger.error(f'Unable to save Embedding status information '
f'in document version {document_version_id} '
f'for tenant {tenant_id}')
raise
db.session.commit()
except SQLAlchemyError as e:
current_app.logger.error(f'Unable to save Embedding status information '
f'in document version {document_version_id} '
f'for tenant {tenant_id}')
raise
delete_embeddings_for_document_version(document_version)
delete_embeddings_for_document_version(document_version)
try:
match document_version.file_type:
case 'pdf':
process_pdf(tenant, model_variables, document_version)
case 'html':
process_html(tenant, model_variables, document_version)
case 'srt':
process_srt(tenant, model_variables, document_version)
case 'mp4' | 'mp3' | 'ogg':
process_audio(tenant, model_variables, document_version)
case _:
raise Exception(f'No functionality defined for file type {document_version.file_type} '
f'for tenant {tenant_id} '
f'while creating embeddings for document version {document_version_id}')
current_event.log("Finished Embedding Creation Task")
try:
match document_version.file_type:
case 'pdf':
process_pdf(tenant, model_variables, document_version)
case 'html':
process_html(tenant, model_variables, document_version)
case 'srt':
process_srt(tenant, model_variables, document_version)
case 'mp4' | 'mp3' | 'ogg':
process_audio(tenant, model_variables, document_version)
case _:
raise Exception(f'No functionality defined for file type {document_version.file_type} '
f'for tenant {tenant_id} '
f'while creating embeddings for document version {document_version_id}')
except Exception as e:
current_app.logger.error(f'Error creating embeddings for tenant {tenant_id} '
f'on document version {document_version_id} '
f'error: {e}')
document_version.processing = False
document_version.processing_finished_at = dt.now(tz.utc)
document_version.processing_error = str(e)[:255]
db.session.commit()
create_embeddings.update_state(state=states.FAILURE)
raise
except Exception as e:
current_app.logger.error(f'Error creating embeddings for tenant {tenant_id} '
f'on document version {document_version_id} '
f'error: {e}')
document_version.processing = False
document_version.processing_finished_at = dt.now(tz.utc)
document_version.processing_error = str(e)[:255]
db.session.commit()
create_embeddings.update_state(state=states.FAILURE)
raise
def delete_embeddings_for_document_version(document_version):
@@ -112,35 +123,43 @@ def delete_embeddings_for_document_version(document_version):
def process_pdf(tenant, model_variables, document_version):
processor = PDFProcessor(tenant, model_variables, document_version)
markdown, title = processor.process()
with current_event.create_span("PDF Processing"):
processor = PDFProcessor(tenant, model_variables, document_version)
markdown, title = processor.process()
# Process markdown and embed
embed_markdown(tenant, model_variables, document_version, markdown, title)
with current_event.create_span("Embedding"):
embed_markdown(tenant, model_variables, document_version, markdown, title)
def process_html(tenant, model_variables, document_version):
processor = HTMLProcessor(tenant, model_variables, document_version)
markdown, title = processor.process()
with current_event.create_span("HTML Processing"):
processor = HTMLProcessor(tenant, model_variables, document_version)
markdown, title = processor.process()
# Process markdown and embed
embed_markdown(tenant, model_variables, document_version, markdown, title)
with current_event.create_span("Embedding"):
embed_markdown(tenant, model_variables, document_version, markdown, title)
def process_audio(tenant, model_variables, document_version):
processor = AudioProcessor(tenant, model_variables, document_version)
markdown, title = processor.process()
with current_event.create_span("Audio Processing"):
processor = AudioProcessor(tenant, model_variables, document_version)
markdown, title = processor.process()
# Process markdown and embed
embed_markdown(tenant, model_variables, document_version, markdown, title)
with current_event.create_span("Embedding"):
embed_markdown(tenant, model_variables, document_version, markdown, title)
def process_srt(tenant, model_variables, document_version):
processor = SRTProcessor(tenant, model_variables, document_version)
markdown, title = processor.process()
with current_event.create_span("SRT Processing"):
processor = SRTProcessor(tenant, model_variables, document_version)
markdown, title = processor.process()
# Process markdown and embed
embed_markdown(tenant, model_variables, document_version, markdown, title)
with current_event.create_span("Embedding"):
embed_markdown(tenant, model_variables, document_version, markdown, title)
def embed_markdown(tenant, model_variables, document_version, markdown, title):
@@ -175,6 +194,7 @@ def embed_markdown(tenant, model_variables, document_version, markdown, title):
def enrich_chunks(tenant, model_variables, document_version, title, chunks):
current_event.log("Starting Enriching Chunks Processing")
current_app.logger.debug(f'Enriching chunks for tenant {tenant.id} '
f'on document version {document_version.id}')
@@ -184,14 +204,21 @@ def enrich_chunks(tenant, model_variables, document_version, title, chunks):
chunk_total_context = (f'Filename: {document_version.file_name}\n'
f'User Context:\n{document_version.user_context}\n\n'
f'User Metadata:\n{document_version.user_metadata}\n\n'
f'Title: {title}\n'
f'{summary}\n'
f'{document_version.system_context}\n\n')
f'Summary:\n{summary}\n'
f'System Context:\n{document_version.system_context}\n\n'
f'System Metadata:\n{document_version.system_metadata}\n\n'
)
enriched_chunks = []
initial_chunk = (f'Filename: {document_version.file_name}\n'
f'User Context:\n{document_version.user_context}\n\n'
f'User Metadata:\n{document_version.user_metadata}\n\n'
f'Title: {title}\n'
f'{chunks[0]}')
f'System Context:\n{document_version.system_context}\n\n'
f'System Metadata:\n{document_version.system_metadata}\n\n'
f'{chunks[0]}'
)
enriched_chunks.append(initial_chunk)
for chunk in chunks[1:]:
@@ -200,11 +227,13 @@ def enrich_chunks(tenant, model_variables, document_version, title, chunks):
current_app.logger.debug(f'Finished enriching chunks for tenant {tenant.id} '
f'on document version {document_version.id}')
current_event.log("Finished Enriching Chunks Processing")
return enriched_chunks
def summarize_chunk(tenant, model_variables, document_version, chunk):
current_event.log("Starting Summarizing Chunk")
current_app.logger.debug(f'Summarizing chunk for tenant {tenant.id} '
f'on document version {document_version.id}')
llm = model_variables['llm']
@@ -222,6 +251,7 @@ def summarize_chunk(tenant, model_variables, document_version, chunk):
summary = chain.invoke({"text": chunk})
current_app.logger.debug(f'Finished summarizing chunk for tenant {tenant.id} '
f'on document version {document_version.id}.')
current_event.log("Finished Summarizing Chunk")
return summary
except LangChainException as e:
current_app.logger.error(f'Error creating summary for chunk enrichment for tenant {tenant.id} '
@@ -231,6 +261,7 @@ def summarize_chunk(tenant, model_variables, document_version, chunk):
def embed_chunks(tenant, model_variables, document_version, chunks):
current_event.log("Starting Embedding Chunks Processing")
current_app.logger.debug(f'Embedding chunks for tenant {tenant.id} '
f'on document version {document_version.id}')
embedding_model = model_variables['embedding_model']
@@ -255,6 +286,8 @@ def embed_chunks(tenant, model_variables, document_version, chunks):
new_embedding.embedding = embedding
new_embeddings.append(new_embedding)
current_app.logger.debug(f'Finished embedding chunks for tenant {tenant.id} ')
return new_embeddings
@@ -268,244 +301,6 @@ def log_parsing_info(tenant, tags, included_elements, excluded_elements, exclude
current_app.embed_tuning_logger.debug(f'First element to parse: {elements_to_parse[0]}')
# def process_youtube(tenant, model_variables, document_version):
# download_file_name = f'{document_version.id}.mp4'
# compressed_file_name = f'{document_version.id}.mp3'
# transcription_file_name = f'{document_version.id}.txt'
# markdown_file_name = f'{document_version.id}.md'
#
# # Remove existing files (in case of a re-processing of the file
# minio_client.delete_document_file(tenant.id, document_version.doc_id, document_version.language,
# document_version.id, download_file_name)
# minio_client.delete_document_file(tenant.id, document_version.doc_id, document_version.language,
# document_version.id, compressed_file_name)
# minio_client.delete_document_file(tenant.id, document_version.doc_id, document_version.language,
# document_version.id, transcription_file_name)
# minio_client.delete_document_file(tenant.id, document_version.doc_id, document_version.language,
# document_version.id, markdown_file_name)
#
# of, title, description, author = download_youtube(document_version.url, tenant.id, document_version,
# download_file_name)
# document_version.system_context = f'Title: {title}\nDescription: {description}\nAuthor: {author}'
# compress_audio(tenant.id, document_version, download_file_name, compressed_file_name)
# transcribe_audio(tenant.id, document_version, compressed_file_name, transcription_file_name, model_variables)
# annotate_transcription(tenant, document_version, transcription_file_name, markdown_file_name, model_variables)
#
# potential_chunks = create_potential_chunks_for_markdown(tenant.id, document_version, markdown_file_name)
# actual_chunks = combine_chunks_for_markdown(potential_chunks, model_variables['min_chunk_size'],
# model_variables['max_chunk_size'])
#
# enriched_chunks = enrich_chunks(tenant, document_version, actual_chunks)
# embeddings = embed_chunks(tenant, model_variables, document_version, enriched_chunks)
#
# try:
# db.session.add(document_version)
# document_version.processing_finished_at = dt.now(tz.utc)
# document_version.processing = False
# db.session.add_all(embeddings)
# db.session.commit()
# except SQLAlchemyError as e:
# current_app.logger.error(f'Error saving embedding information for tenant {tenant.id} '
# f'on Youtube document version {document_version.id}'
# f'error: {e}')
# raise
#
# current_app.logger.info(f'Embeddings created successfully for tenant {tenant.id} '
# f'on Youtube document version {document_version.id} :-)')
#
#
# def download_youtube(url, tenant_id, document_version, file_name):
# try:
# current_app.logger.info(f'Downloading YouTube video: {url} for tenant: {tenant_id}')
# yt = YouTube(url)
# stream = yt.streams.get_audio_only()
#
# with tempfile.NamedTemporaryFile(delete=False) as temp_file:
# stream.download(output_path=temp_file.name)
# with open(temp_file.name, 'rb') as f:
# file_data = f.read()
#
# minio_client.upload_document_file(tenant_id, document_version.doc_id, document_version.language,
# document_version.id,
# file_name, file_data)
#
# current_app.logger.info(f'Downloaded YouTube video: {url} for tenant: {tenant_id}')
# return file_name, yt.title, yt.description, yt.author
# except Exception as e:
# current_app.logger.error(f'Error downloading YouTube video: {url} for tenant: {tenant_id} with error: {e}')
# raise
#
#
# def compress_audio(tenant_id, document_version, input_file, output_file):
# try:
# current_app.logger.info(f'Compressing audio for tenant: {tenant_id}')
#
# input_data = minio_client.download_document_file(tenant_id, document_version.doc_id, document_version.language,
# document_version.id, input_file)
#
# with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_input:
# temp_input.write(input_data)
# temp_input.flush()
#
# with tempfile.NamedTemporaryFile(delete=False, suffix='.mp3') as temp_output:
# result = subprocess.run(
# ['ffmpeg', '-i', temp_input.name, '-b:a', '64k', '-f', 'mp3', temp_output.name],
# capture_output=True,
# text=True
# )
#
# if result.returncode != 0:
# raise Exception(f"Compression failed: {result.stderr}")
#
# with open(temp_output.name, 'rb') as f:
# compressed_data = f.read()
#
# minio_client.upload_document_file(tenant_id, document_version.doc_id, document_version.language,
# document_version.id,
# output_file, compressed_data)
#
# current_app.logger.info(f'Compressed audio for tenant: {tenant_id}')
# except Exception as e:
# current_app.logger.error(f'Error compressing audio for tenant: {tenant_id} with error: {e}')
# raise
#
#
# def transcribe_audio(tenant_id, document_version, input_file, output_file, model_variables):
# try:
# current_app.logger.info(f'Transcribing audio for tenant: {tenant_id}')
# client = model_variables['transcription_client']
# model = model_variables['transcription_model']
#
# # Download the audio file from MinIO
# audio_data = minio_client.download_document_file(tenant_id, document_version.doc_id, document_version.language,
# document_version.id, input_file)
#
# # Load the audio data into pydub
# audio = AudioSegment.from_mp3(io.BytesIO(audio_data))
#
# # Define segment length (e.g., 10 minutes)
# segment_length = 10 * 60 * 1000 # 10 minutes in milliseconds
#
# transcriptions = []
#
# # Split audio into segments and transcribe each
# for i, chunk in enumerate(audio[::segment_length]):
# current_app.logger.debug(f'Transcribing chunk {i + 1} of {len(audio) // segment_length + 1}')
#
# with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_audio:
# chunk.export(temp_audio.name, format="mp3")
#
# with open(temp_audio.name, 'rb') as audio_segment:
# transcription = client.audio.transcriptions.create(
# file=audio_segment,
# model=model,
# language=document_version.language,
# response_format='verbose_json',
# )
#
# transcriptions.append(transcription.text)
#
# os.unlink(temp_audio.name) # Delete the temporary file
#
# # Combine all transcriptions
# full_transcription = " ".join(transcriptions)
#
# # Upload the full transcription to MinIO
# minio_client.upload_document_file(
# tenant_id,
# document_version.doc_id,
# document_version.language,
# document_version.id,
# output_file,
# full_transcription.encode('utf-8')
# )
#
# current_app.logger.info(f'Transcribed audio for tenant: {tenant_id}')
# except Exception as e:
# current_app.logger.error(f'Error transcribing audio for tenant: {tenant_id}, with error: {e}')
# raise
#
#
# def annotate_transcription(tenant, document_version, input_file, output_file, model_variables):
# try:
# current_app.logger.debug(f'Annotating transcription for tenant {tenant.id}')
#
# char_splitter = CharacterTextSplitter(separator='.',
# chunk_size=model_variables['annotation_chunk_length'],
# chunk_overlap=0)
#
# headers_to_split_on = [
# ("#", "Header 1"),
# ("##", "Header 2"),
# ]
# markdown_splitter = MarkdownHeaderTextSplitter(headers_to_split_on, strip_headers=False)
#
# llm = model_variables['llm']
# template = model_variables['transcript_template']
# language_template = create_language_template(template, document_version.language)
# transcript_prompt = ChatPromptTemplate.from_template(language_template)
# setup = RunnablePassthrough()
# output_parser = StrOutputParser()
#
# # Download the transcription file from MinIO
# transcript_data = minio_client.download_document_file(tenant.id, document_version.doc_id,
# document_version.language, document_version.id,
# input_file)
# transcript = transcript_data.decode('utf-8')
#
# chain = setup | transcript_prompt | llm | output_parser
#
# chunks = char_splitter.split_text(transcript)
# all_markdown_chunks = []
# last_markdown_chunk = ''
# for chunk in chunks:
# current_app.logger.debug(f'Annotating next chunk of {len(chunks)} for tenant {tenant.id}')
# full_input = last_markdown_chunk + '\n' + chunk
# if tenant.embed_tuning:
# current_app.embed_tuning_logger.debug(f'Annotating chunk: \n '
# f'------------------\n'
# f'{full_input}\n'
# f'------------------\n')
# input_transcript = {'transcript': full_input}
# markdown = chain.invoke(input_transcript)
# # GPT-4o returns some kind of content description: ```markdown <text> ```
# if markdown.startswith("```markdown"):
# markdown = "\n".join(markdown.strip().split("\n")[1:-1])
# if tenant.embed_tuning:
# current_app.embed_tuning_logger.debug(f'Markdown Received: \n '
# f'------------------\n'
# f'{markdown}\n'
# f'------------------\n')
# md_header_splits = markdown_splitter.split_text(markdown)
# markdown_chunks = [doc.page_content for doc in md_header_splits]
# # claude-3.5-sonnet returns introductory text
# if not markdown_chunks[0].startswith('#'):
# markdown_chunks.pop(0)
# last_markdown_chunk = markdown_chunks[-1]
# last_markdown_chunk = "\n".join(markdown.strip().split("\n")[1:])
# markdown_chunks.pop()
# all_markdown_chunks += markdown_chunks
#
# all_markdown_chunks += [last_markdown_chunk]
#
# annotated_transcript = '\n'.join(all_markdown_chunks)
#
# # Upload the annotated transcript to MinIO
# minio_client.upload_document_file(
# tenant.id,
# document_version.doc_id,
# document_version.language,
# document_version.id,
# output_file,
# annotated_transcript.encode('utf-8')
# )
#
# current_app.logger.info(f'Annotated transcription for tenant {tenant.id}')
# except Exception as e:
# current_app.logger.error(f'Error annotating transcription for tenant {tenant.id}, with error: {e}')
# raise
def create_potential_chunks_for_markdown(tenant_id, document_version, input_file):
try:
current_app.logger.info(f'Creating potential chunks for tenant {tenant_id}')

View File

@@ -0,0 +1,32 @@
"""Add Tenant Type
Revision ID: 083ccd8206ea
Revises: ce6f5b62bbfb
Create Date: 2024-09-12 11:30:41.958117
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = '083ccd8206ea'
down_revision = 'ce6f5b62bbfb'
branch_labels = None
depends_on = None
def upgrade():
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table('tenant', schema=None) as batch_op:
batch_op.add_column(sa.Column('type', sa.String(length=20), server_default='Active', nullable=True))
# ### end Alembic commands ###
def downgrade():
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table('tenant', schema=None) as batch_op:
batch_op.drop_column('type')
# ### end Alembic commands ###

View File

@@ -0,0 +1,49 @@
"""LLM Metrics Added
Revision ID: 25588210dab2
Revises: 083ccd8206ea
Create Date: 2024-09-17 12:44:12.242990
"""
from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
# revision identifiers, used by Alembic.
revision = '25588210dab2'
down_revision = '083ccd8206ea'
branch_labels = None
depends_on = None
def upgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.create_table('llm_usage_metric',
sa.Column('id', sa.Integer(), nullable=False),
sa.Column('tenant_id', sa.Integer(), nullable=False),
sa.Column('environment', sa.String(length=20), nullable=False),
sa.Column('activity', sa.String(length=20), nullable=False),
sa.Column('sub_activity', sa.String(length=20), nullable=False),
sa.Column('activity_detail', sa.String(length=50), nullable=True),
sa.Column('session_id', sa.String(length=50), nullable=True),
sa.Column('interaction_id', sa.Integer(), nullable=True),
sa.Column('document_version_id', sa.Integer(), nullable=True),
sa.Column('prompt_tokens', sa.Integer(), nullable=True),
sa.Column('completion_tokens', sa.Integer(), nullable=True),
sa.Column('total_tokens', sa.Integer(), nullable=True),
sa.Column('cost', sa.Float(), nullable=True),
sa.Column('latency', sa.Float(), nullable=True),
sa.Column('model_name', sa.String(length=50), nullable=False),
sa.Column('timestamp', sa.DateTime(), nullable=False),
sa.Column('additional_info', postgresql.JSONB(astext_type=sa.Text()), nullable=True),
sa.PrimaryKeyConstraint('id'),
schema='public'
)
# ### end Alembic commands ###
def downgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.drop_table('llm_usage_metric', schema='public')
# ### end Alembic commands ###

View File

@@ -0,0 +1,49 @@
"""Corrected BusinessEventLog
Revision ID: 2cbdb23ae02e
Revises: e3c6ff8c22df
Create Date: 2024-09-25 10:17:40.154566
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = '2cbdb23ae02e'
down_revision = 'e3c6ff8c22df'
branch_labels = None
depends_on = None
def upgrade():
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table('business_event_log', schema=None) as batch_op:
batch_op.alter_column('span_id',
existing_type=sa.VARCHAR(length=50),
nullable=True)
batch_op.alter_column('span_name',
existing_type=sa.VARCHAR(length=50),
nullable=True)
batch_op.alter_column('parent_span_id',
existing_type=sa.VARCHAR(length=50),
nullable=True)
# ### end Alembic commands ###
def downgrade():
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table('business_event_log', schema=None) as batch_op:
batch_op.alter_column('parent_span_id',
existing_type=sa.VARCHAR(length=50),
nullable=False)
batch_op.alter_column('span_name',
existing_type=sa.VARCHAR(length=50),
nullable=False)
batch_op.alter_column('span_id',
existing_type=sa.VARCHAR(length=50),
nullable=False)
# ### end Alembic commands ###

View File

@@ -0,0 +1,38 @@
"""session_id is uuid iso integeger
Revision ID: 829094f07d44
Revises: 2cbdb23ae02e
Create Date: 2024-09-27 09:19:13.201988
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = '829094f07d44'
down_revision = '2cbdb23ae02e'
branch_labels = None
depends_on = None
def upgrade():
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table('business_event_log', schema=None) as batch_op:
batch_op.alter_column('chat_session_id',
existing_type=sa.INTEGER(),
type_=sa.String(length=50),
existing_nullable=True)
# ### end Alembic commands ###
def downgrade():
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table('business_event_log', schema=None) as batch_op:
batch_op.alter_column('chat_session_id',
existing_type=sa.String(length=50),
type_=sa.INTEGER(),
existing_nullable=True)
# ### end Alembic commands ###

View File

@@ -0,0 +1,67 @@
"""Updated Monitoring Setup
Revision ID: e3c6ff8c22df
Revises: 25588210dab2
Create Date: 2024-09-25 10:05:57.684506
"""
from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
# revision identifiers, used by Alembic.
revision = 'e3c6ff8c22df'
down_revision = '25588210dab2'
branch_labels = None
depends_on = None
def upgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.create_table('business_event_log',
sa.Column('id', sa.Integer(), nullable=False),
sa.Column('timestamp', sa.DateTime(), nullable=False),
sa.Column('event_type', sa.String(length=50), nullable=False),
sa.Column('tenant_id', sa.Integer(), nullable=False),
sa.Column('trace_id', sa.String(length=50), nullable=False),
sa.Column('span_id', sa.String(length=50), nullable=False),
sa.Column('span_name', sa.String(length=50), nullable=False),
sa.Column('parent_span_id', sa.String(length=50), nullable=False),
sa.Column('document_version_id', sa.Integer(), nullable=True),
sa.Column('chat_session_id', sa.Integer(), nullable=True),
sa.Column('interaction_id', sa.Integer(), nullable=True),
sa.Column('environment', sa.String(length=20), nullable=True),
sa.Column('message', sa.Text(), nullable=True),
sa.PrimaryKeyConstraint('id'),
schema='public'
)
op.drop_table('llm_usage_metric')
# ### end Alembic commands ###
def downgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.create_table('llm_usage_metric',
sa.Column('id', sa.INTEGER(), autoincrement=True, nullable=False),
sa.Column('tenant_id', sa.INTEGER(), autoincrement=False, nullable=False),
sa.Column('environment', sa.VARCHAR(length=20), autoincrement=False, nullable=False),
sa.Column('activity', sa.VARCHAR(length=20), autoincrement=False, nullable=False),
sa.Column('sub_activity', sa.VARCHAR(length=20), autoincrement=False, nullable=False),
sa.Column('activity_detail', sa.VARCHAR(length=50), autoincrement=False, nullable=True),
sa.Column('session_id', sa.VARCHAR(length=50), autoincrement=False, nullable=True),
sa.Column('interaction_id', sa.INTEGER(), autoincrement=False, nullable=True),
sa.Column('document_version_id', sa.INTEGER(), autoincrement=False, nullable=True),
sa.Column('prompt_tokens', sa.INTEGER(), autoincrement=False, nullable=True),
sa.Column('completion_tokens', sa.INTEGER(), autoincrement=False, nullable=True),
sa.Column('total_tokens', sa.INTEGER(), autoincrement=False, nullable=True),
sa.Column('cost', sa.DOUBLE_PRECISION(precision=53), autoincrement=False, nullable=True),
sa.Column('latency', sa.DOUBLE_PRECISION(precision=53), autoincrement=False, nullable=True),
sa.Column('model_name', sa.VARCHAR(length=50), autoincrement=False, nullable=False),
sa.Column('timestamp', postgresql.TIMESTAMP(), autoincrement=False, nullable=False),
sa.Column('additional_info', postgresql.JSONB(astext_type=sa.Text()), autoincrement=False, nullable=True),
sa.PrimaryKeyConstraint('id', name='llm_usage_metric_pkey')
)
op.drop_table('business_event_log', schema='public')
# ### end Alembic commands ###

View File

@@ -159,13 +159,12 @@ http {
}
location /flower/ {
proxy_pass http://127.0.0.1:5555/;
proxy_pass http://flower:5555/flower/;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;
}
}
include sites-enabled/*;

View File

@@ -508,3 +508,34 @@ input[type="radio"] {
overflow-x: auto;
}
/* Hide Select2's custom elements */
.select2-container-hidden {
position: absolute !important;
left: -9999px !important;
}
.select2-dropdown-hidden {
display: none !important;
}
/* Ensure the original select is visible and styled */
select.select2 {
display: block !important;
width: 100% !important;
height: auto !important;
padding: .375rem .75rem !important;
font-size: 1rem !important;
line-height: 1.5 !important;
color: #495057 !important;
background-color: #fff !important;
background-clip: padding-box !important;
border: 1px solid #ced4da !important;
border-radius: .25rem !important;
transition: border-color .15s ease-in-out,box-shadow .15s ease-in-out !important;
}
/* Style for multiple select */
select.select2[multiple] {
height: auto !important;
}

View File

View File

0
nginx/static/js/eveai-sdk.js Executable file
View File

View File

@@ -1,70 +0,0 @@
eveAI/
├── .venv/
├── common/
│ ├── models/
│ │ ├── __init__.py
│ │ ├── document.py
│ │ ├── interaction.py
│ │ └── user.py
│ │
│ └── utils/
│ ├── __init__.py
│ └── extensions.py
├── config/
│ ├── __init__.py
│ ├── config.py
│ └── logging_config.py
├── eveai_app/
│ ├── static/
│ ├── templates/
│ │ ├── basic/
│ │ ├── document/
│ │ ├── interaction/
│ │ ├── security/
│ │ ├── user/
│ │ ├── base.html
│ │ ├── footer.html
│ │ ├── head.html
│ │ ├── header.html
│ │ ├── index.html
│ │ ├── macros.html
│ │ ├── navbar.html
│ │ ├── navbar_macros.html
│ │ └── scripts.html
│ │
│ └── views/
│ ├── __init__.py
│ ├── basic_views.py
│ ├── document_forms.py
│ ├── document_views.py
│ ├── errors.py
│ ├── temp/
│ ├── user_forms.py
│ └── user_views.py
├── eveai_workers/
│ ├── __init__.py
│ ├── celery_utils.py
│ └── tasks.py
├── instance/
├── logs/
│ ├── app.log
│ ├── eveai.app.log
│ └── eveai.workers.log
├── migrations/
├── scripts/
│ ├── run_eveai_app.py
│ ├── run_eveai_workers.py
│ ├── start_eveai_app.sh
│ ├── start_eveai_workers.sh
│ ├── start_flower.sh
│ └── start_logdy.sh
└── requirements.txt

19
repopack.config.json Normal file
View File

@@ -0,0 +1,19 @@
{
"output": {
"filePath": "eveai_repo.txt",
"style": "xml",
"removeComments": false,
"removeEmptyLines": false,
"topFilesLength": 5,
"showLineNumbers": false
},
"include": [],
"ignore": {
"useGitignore": true,
"useDefaultPatterns": true,
"customPatterns": []
},
"security": {
"enableSecurityCheck": true
}
}

View File

@@ -26,22 +26,22 @@ greenlet~=3.0.3
gunicorn~=22.0.0
Jinja2~=3.1.4
kombu~=5.3.7
langchain~=0.2.7
langchain-anthropic~=0.1.19
langchain-community~=0.2.7
langchain-core~=0.2.16
langchain-mistralai~=0.1.9
langchain-openai~=0.1.15
langchain-postgres~=0.0.9
langchain-text-splitters~=0.2.2
langchain~=0.3.0
langchain-anthropic~=0.2.0
langchain-community~=0.3.0
langchain-core~=0.3.0
langchain-mistralai~=0.2.0
langchain-openai~=0.2.0
langchain-postgres~=0.0.12
langchain-text-splitters~=0.3.0
langcodes~=3.4.0
langdetect~=1.0.9
langsmith~=0.1.81
openai~=1.35.13
openai~=1.45.1
pg8000~=1.31.2
pgvector~=0.2.5
pycryptodome~=3.20.0
pydantic~=2.7.4
pydantic~=2.9.1
PyJWT~=2.8.0
PySocks~=1.7.1
python-dateutil~=2.9.0.post0
@@ -53,7 +53,7 @@ pytz~=2024.1
PyYAML~=6.0.2rc1
redis~=5.0.4
requests~=2.32.3
SQLAlchemy~=2.0.31
SQLAlchemy~=2.0.35
tiktoken~=0.7.0
tzdata~=2024.1
urllib3~=2.2.2
@@ -63,7 +63,7 @@ zxcvbn~=4.4.28
groq~=0.9.0
pydub~=0.25.1
argparse~=1.4.0
portkey_ai~=1.8.2
portkey_ai~=1.8.7
minio~=7.2.7
Werkzeug~=3.0.3
itsdangerous~=2.2.0
@@ -74,4 +74,9 @@ pillow~=10.4.0
pdfplumber~=0.11.4
PyPDF2~=3.0.1
flask-restx~=1.3.0
prometheus-flask-exporter~=0.23.1
flask-healthz~=1.0.1
langsmith~=0.1.121
anthropic~=0.34.2
prometheus-client~=0.20.0
flower~=2.0.1

View File

@@ -1,175 +0,0 @@
aiohttp==3.9.5
aiosignal==1.3.1
alembic==1.13.1
amqp==5.2.0
annotated-types==0.7.0
anyio==4.4.0
asn1crypto==1.5.1
attrs==23.2.0
Babel==2.15.0
backoff==2.2.1
bcrypt==4.1.3
beautifulsoup4==4.12.3
bidict==0.23.1
billiard==4.2.0
blinker==1.8.2
cachelib==0.13.0
cachetools==5.3.3
celery==5.4.0
certifi==2024.6.2
chardet==5.2.0
charset-normalizer==3.3.2
click==8.1.7
click-didyoumean==0.3.1
click-plugins==1.1.1
click-repl==0.3.0
colorama==0.4.6
cors==1.0.1
dataclasses-json==0.6.7
deepdiff==7.0.1
distro==1.9.0
dnspython==2.6.1
dominate==2.9.1
email_validator==2.2.0
emoji==2.12.1
eventlet==0.36.1
filelock==3.15.4
filetype==1.2.0
Flask==3.0.3
Flask-BabelEx==0.9.4
Flask-Bootstrap==3.3.7.1
Flask-Cors==4.0.1
Flask-JWT-Extended==4.6.0
Flask-Login==0.6.3
flask-mailman==1.1.0
Flask-Migrate==4.0.7
Flask-Principal==0.4.0
Flask-Security-Too==5.4.3
Flask-Session==0.8.0
Flask-SocketIO==5.3.6
Flask-SQLAlchemy==3.1.1
Flask-WTF==1.2.1
flower==2.0.1
frozenlist==1.4.1
fsspec==2024.6.0
future==1.0.0
gevent==24.2.1
gevent-websocket==0.10.1
google==3.0.0
google-api-core==2.19.1rc0
google-auth==2.30.0
google-cloud-core==2.4.1
google-cloud-kms==2.23.0
googleapis-common-protos==1.63.2rc0
greenlet==3.0.3
grpc-google-iam-v1==0.13.0
grpcio==1.63.0
grpcio-status==1.62.2
gunicorn==22.0.0
h11==0.14.0
httpcore==1.0.5
httpx==0.27.0
httpx-sse==0.4.0
huggingface-hub==0.23.4
humanize==4.9.0
idna==3.7
importlib_resources==6.4.0
itsdangerous==2.2.0
Jinja2==3.1.4
joblib==1.4.2
jsonpatch==1.33
jsonpath-python==1.0.6
jsonpointer==3.0.0
kombu==5.3.7
langchain==0.2.5
langchain-community==0.2.5
langchain-core==0.2.9
langchain-mistralai==0.1.8
langchain-openai==0.1.9
langchain-postgres==0.0.9
langchain-text-splitters==0.2.1
langcodes==3.4.0
langdetect==1.0.9
langsmith==0.1.81
language_data==1.2.0
lxml==5.2.2
Mako==1.3.5
marisa-trie==1.2.0
MarkupSafe==2.1.5
marshmallow==3.21.3
msgspec==0.18.6
multidict==6.0.5
mypy-extensions==1.0.0
nest-asyncio==1.6.0
nltk==3.8.1
numpy==2.0.0
openai==1.35.3
ordered-set==4.1.0
orjson==3.10.5
packaging==24.1
passlib==1.7.4
pg8000==1.31.2
pgvector==0.2.5
prometheus_client==0.20.0
prompt_toolkit==3.0.47
proto-plus==1.24.0
protobuf==5.27.1
psycopg==3.1.19
psycopg-pool==3.2.2
pyasn1==0.6.0
pyasn1_modules==0.4.0
pycryptodome==3.20.0
pydantic==2.7.4
pydantic_core==2.19.0
pydevd-pycharm==242.18071.12
PyJWT==2.8.0
pypdf==4.2.0
PySocks==1.7.1
python-dateutil==2.9.0.post0
python-engineio==4.9.1
python-iso639==2024.4.27
python-magic==0.4.27
python-socketio==5.11.3
pytz==2024.1
PyYAML==6.0.2rc1
rapidfuzz==3.9.3
redis==5.0.4
regex==2024.4.28
requests==2.32.3
requests-file==2.1.0
requests-toolbelt==1.0.0
rsa==4.9
scramp==1.4.5
setuptools==69.5.1
simple-websocket==1.0.0
six==1.16.0
sniffio==1.3.1
soupsieve==2.5
speaklater==1.3
SQLAlchemy==2.0.31
tabulate==0.9.0
tenacity==8.4.2
tiktoken==0.7.0
tldextract==5.1.2
tokenizers==0.19.1
tornado==6.4.1
tqdm==4.66.4
typing-inspect==0.9.0
typing_extensions==4.12.2
tzdata==2024.1
unstructured==0.14.8
unstructured-client==0.23.7
urllib3==2.2.2
uWSGI==2.0.26
vine==5.1.0
visitor==0.1.3
wcwidth==0.2.13
Werkzeug==3.0.3
wrapt==1.16.0
wsproto==1.2.0
WTForms==3.1.2
wtforms-html5==0.6.1
yarl==1.9.4
zope.event==5.0
zope.interface==6.3
zxcvbn==4.4.28

View File

@@ -1,19 +0,0 @@
Flask~=3.0.3
WTForms~=3.1.2
SQLAlchemy~=2.0.29
alembic~=1.13.1
Werkzeug~=3.0.2
pgvector~=0.2.5
gevent~=24.2.1
celery~=5.4.0
kombu~=5.3.7
langchain~=0.1.17
requests~=2.31.0
beautifulsoup4~=4.12.3
google~=3.0.0
redis~=5.0.4
itsdangerous~=2.2.0
pydantic~=2.7.1
chardet~=5.2.0
langcodes~=3.4.0
pytz~=2024.1

View File

@@ -8,7 +8,7 @@ export PYTHONPATH="$PROJECT_DIR/patched_packages:$PYTHONPATH:$PROJECT_DIR" # In
chown -R appuser:appuser /app/logs
# Start a worker for the 'embeddings' queue with higher concurrency
celery -A eveai_workers.celery worker --loglevel=info -Q embeddings --autoscale=2,8 --hostname=embeddings_worker@%h &
celery -A eveai_workers.celery worker --loglevel=debug -Q embeddings --autoscale=2,8 --hostname=embeddings_worker@%h &
# Start a worker for the 'llm_interactions' queue with auto-scaling - not necessary, in eveai_chat_workers
# celery -A eveai_workers.celery worker --loglevel=info - Q llm_interactions --autoscale=2,8 --hostname=interactions_worker@%h &

33
scripts/start_flower.sh Executable file → Normal file
View File

@@ -1,9 +1,28 @@
#!/usr/bin/env bash
#!/bin/bash
set -e
cd "/Volumes/OWC4M2_1/Dropbox/Josako's Dev/Josako/EveAI/Development/eveAI/" || exit 1
source "/Volumes/OWC4M2_1/Dropbox/Josako's Dev/Josako/EveAI/Development/eveAI/.venv/bin/activate"
# scripts/start_flower.sh
# on development machine, no authentication required
export FLOWER_UNAUTHENTICATED_API=True
# Start a worker for the 'embeddings' queue with higher concurrency
celery -A eveai_workers.celery flower
# Set default values
REDIS_HOST=${REDIS_URL:-redis}
REDIS_PORT=${REDIS_PORT:-6379}
# Set environment-specific variables
if [ "$FLASK_ENV" = "production" ]; then
# Production settings
export FLOWER_BASIC_AUTH="${FLOWER_USER}:${FLOWER_PASSWORD}"
export FLOWER_BROKER_URL="redis://${REDIS_USER}:${REDIS_PASS}@${REDIS_URL}:${REDIS_PORT}/0"
export CELERY_BROKER_URL="redis://${REDIS_USER}:${REDIS_PASS}@${REDIS_URL}:${REDIS_PORT}/0"
else
# Development settings
export FLOWER_BROKER_URL="redis://${REDIS_HOST}:${REDIS_PORT}/0"
export CELERY_BROKER_URL="redis://${REDIS_HOST}:${REDIS_PORT}/0"
fi
echo $BROKER_URL
echo "----------"
# Start Flower
exec celery flower \
--url-prefix=/flower \
--port=5555