Compare commits
8 Commits
v1.0.7-alf
...
v1.0.9-alf
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
883175b8f5 | ||
|
|
ae697df4c9 | ||
|
|
d9cb00fcdc | ||
|
|
ee1b0f1cfa | ||
|
|
a740c96630 | ||
|
|
67bdeac434 | ||
|
|
1622591afd | ||
|
|
6cf660e622 |
1
.gitignore
vendored
1
.gitignore
vendored
@@ -41,3 +41,4 @@ migrations/.DS_Store
|
||||
migrations/public/.DS_Store
|
||||
scripts/.DS_Store
|
||||
scripts/__pycache__/run_eveai_app.cpython-312.pyc
|
||||
/eveai_repo.txt
|
||||
|
||||
21
.repopackignore
Normal file
21
.repopackignore
Normal file
@@ -0,0 +1,21 @@
|
||||
# Add patterns to ignore here, one per line
|
||||
# Example:
|
||||
# *.log
|
||||
# tmp/
|
||||
logs/
|
||||
nginx/static/assets/fonts/
|
||||
nginx/static/assets/img/
|
||||
nginx/static/assets/js/
|
||||
nginx/static/scss/
|
||||
patched_packages/
|
||||
migrations/
|
||||
*material*
|
||||
*nucleo*
|
||||
*package*
|
||||
nginx/mime.types
|
||||
*.gitignore*
|
||||
.python-version
|
||||
.repopackignore
|
||||
repopack.config.json
|
||||
|
||||
|
||||
25
CHANGELOG.md
25
CHANGELOG.md
@@ -24,7 +24,30 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
|
||||
|
||||
### Security
|
||||
- In case of vulnerabilities.
|
||||
-
|
||||
|
||||
## [1.0.8-alfa] - 2024-09-12
|
||||
|
||||
### Added
|
||||
- Tenant type defined to allow for active, inactive, demo ... tenants
|
||||
- Search and filtering functionality on Tenants
|
||||
- Implementation of health checks (1st version)
|
||||
- Provision for Prometheus monitoring (no implementation yet)
|
||||
- Refine audio_processor and srt_processor to reduce duplicate code and support larger files
|
||||
- Introduction of repopack to reason in LLMs about the code
|
||||
|
||||
### Fixed
|
||||
- Refine audio_processor and srt_processor to reduce duplicate code and support larger files
|
||||
|
||||
## [1.0.7-alfa] - 2024-09-12
|
||||
|
||||
### Added
|
||||
- Full Document API allowing for creation, updating and invalidation of documents.
|
||||
- Metadata fields (JSON) added to DocumentVersion, allowing end-users to add structured information
|
||||
- Wordpress plugin eveai_sync to synchronize Wordpress content with EveAI
|
||||
|
||||
### Fixed
|
||||
- Maximal deduplication of code between views and api in document_utils.py
|
||||
|
||||
## [1.0.6-alfa] - 2024-09-03
|
||||
|
||||
### Fixed
|
||||
|
||||
@@ -10,8 +10,8 @@ from flask_jwt_extended import JWTManager
|
||||
from flask_session import Session
|
||||
from flask_wtf import CSRFProtect
|
||||
from flask_restx import Api
|
||||
from prometheus_flask_exporter import PrometheusMetrics
|
||||
|
||||
from .utils.nginx_utils import prefixed_url_for
|
||||
from .utils.simple_encryption import SimpleEncryption
|
||||
from .utils.minio_utils import MinioClient
|
||||
|
||||
@@ -31,3 +31,4 @@ session = Session()
|
||||
api_rest = Api()
|
||||
simple_encryption = SimpleEncryption()
|
||||
minio_client = MinioClient()
|
||||
metrics = PrometheusMetrics.for_app_factory()
|
||||
|
||||
@@ -1,23 +1,31 @@
|
||||
from langchain_core.retrievers import BaseRetriever
|
||||
from sqlalchemy import asc
|
||||
from sqlalchemy.exc import SQLAlchemyError
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import Field, BaseModel, PrivateAttr
|
||||
from typing import Any, Dict
|
||||
from flask import current_app
|
||||
|
||||
from common.extensions import db
|
||||
from common.models.interaction import ChatSession, Interaction
|
||||
from common.utils.datetime_utils import get_date_in_timezone
|
||||
from common.utils.model_utils import ModelVariables
|
||||
|
||||
|
||||
class EveAIHistoryRetriever(BaseRetriever):
|
||||
model_variables: Dict[str, Any] = Field(...)
|
||||
session_id: str = Field(...)
|
||||
class EveAIHistoryRetriever(BaseRetriever, BaseModel):
|
||||
_model_variables: ModelVariables = PrivateAttr()
|
||||
_session_id: str = PrivateAttr()
|
||||
|
||||
def __init__(self, model_variables: Dict[str, Any], session_id: str):
|
||||
def __init__(self, model_variables: ModelVariables, session_id: str):
|
||||
super().__init__()
|
||||
self.model_variables = model_variables
|
||||
self.session_id = session_id
|
||||
self._model_variables = model_variables
|
||||
self._session_id = session_id
|
||||
|
||||
@property
|
||||
def model_variables(self) -> ModelVariables:
|
||||
return self._model_variables
|
||||
|
||||
@property
|
||||
def session_id(self) -> str:
|
||||
return self._session_id
|
||||
|
||||
def _get_relevant_documents(self, query: str):
|
||||
current_app.logger.debug(f'Retrieving history of interactions for query: {query}')
|
||||
@@ -1,30 +1,39 @@
|
||||
from langchain_core.retrievers import BaseRetriever
|
||||
from sqlalchemy import func, and_, or_, desc
|
||||
from sqlalchemy.exc import SQLAlchemyError
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic import BaseModel, Field, PrivateAttr
|
||||
from typing import Any, Dict
|
||||
from flask import current_app
|
||||
|
||||
from common.extensions import db
|
||||
from common.models.document import Document, DocumentVersion
|
||||
from common.utils.datetime_utils import get_date_in_timezone
|
||||
from common.utils.model_utils import ModelVariables
|
||||
|
||||
|
||||
class EveAIRetriever(BaseRetriever):
|
||||
model_variables: Dict[str, Any] = Field(...)
|
||||
tenant_info: Dict[str, Any] = Field(...)
|
||||
class EveAIRetriever(BaseRetriever, BaseModel):
|
||||
_model_variables: ModelVariables = PrivateAttr()
|
||||
_tenant_info: Dict[str, Any] = PrivateAttr()
|
||||
|
||||
def __init__(self, model_variables: Dict[str, Any], tenant_info: Dict[str, Any]):
|
||||
def __init__(self, model_variables: ModelVariables, tenant_info: Dict[str, Any]):
|
||||
super().__init__()
|
||||
self.model_variables = model_variables
|
||||
self.tenant_info = tenant_info
|
||||
current_app.logger.debug(f'Model variables type: {type(model_variables)}')
|
||||
self._model_variables = model_variables
|
||||
self._tenant_info = tenant_info
|
||||
|
||||
@property
|
||||
def model_variables(self) -> ModelVariables:
|
||||
return self._model_variables
|
||||
|
||||
@property
|
||||
def tenant_info(self) -> Dict[str, Any]:
|
||||
return self._tenant_info
|
||||
|
||||
def _get_relevant_documents(self, query: str):
|
||||
|
||||
|
||||
|
||||
current_app.logger.debug(f'Retrieving relevant documents for query: {query}')
|
||||
query_embedding = self._get_query_embedding(query)
|
||||
current_app.logger.debug(f'Model Variables Private: {type(self._model_variables)}')
|
||||
current_app.logger.debug(f'Model Variables Property: {type(self.model_variables)}')
|
||||
db_class = self.model_variables['embedding_db_model']
|
||||
similarity_threshold = self.model_variables['similarity_threshold']
|
||||
k = self.model_variables['k']
|
||||
21
common/models/monitoring.py
Normal file
21
common/models/monitoring.py
Normal file
@@ -0,0 +1,21 @@
|
||||
from common.extensions import db
|
||||
|
||||
|
||||
class BusinessEventLog(db.Model):
|
||||
__bind_key__ = 'public'
|
||||
__table_args__ = {'schema': 'public'}
|
||||
|
||||
id = db.Column(db.Integer, primary_key=True)
|
||||
timestamp = db.Column(db.DateTime, nullable=False)
|
||||
event_type = db.Column(db.String(50), nullable=False)
|
||||
tenant_id = db.Column(db.Integer, nullable=False)
|
||||
trace_id = db.Column(db.String(50), nullable=False)
|
||||
span_id = db.Column(db.String(50))
|
||||
span_name = db.Column(db.String(50))
|
||||
parent_span_id = db.Column(db.String(50))
|
||||
document_version_id = db.Column(db.Integer)
|
||||
chat_session_id = db.Column(db.String(50))
|
||||
interaction_id = db.Column(db.Integer)
|
||||
environment = db.Column(db.String(20))
|
||||
message = db.Column(db.Text)
|
||||
# Add any other fields relevant for invoicing or warnings
|
||||
@@ -2,7 +2,6 @@ from common.extensions import db
|
||||
from flask_security import UserMixin, RoleMixin
|
||||
from sqlalchemy.dialects.postgresql import ARRAY
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy import CheckConstraint
|
||||
|
||||
|
||||
class Tenant(db.Model):
|
||||
@@ -21,6 +20,7 @@ class Tenant(db.Model):
|
||||
website = db.Column(db.String(255), nullable=True)
|
||||
timezone = db.Column(db.String(50), nullable=True, default='UTC')
|
||||
rag_context = db.Column(db.Text, nullable=True)
|
||||
type = db.Column(db.String(20), nullable=True, server_default='Active')
|
||||
|
||||
# language information
|
||||
default_language = db.Column(db.String(2), nullable=True)
|
||||
@@ -56,7 +56,6 @@ class Tenant(db.Model):
|
||||
encrypted_chat_api_key = db.Column(db.String(500), nullable=True)
|
||||
encrypted_api_key = db.Column(db.String(500), nullable=True)
|
||||
|
||||
|
||||
# Tuning enablers
|
||||
embed_tuning = db.Column(db.Boolean, nullable=True, default=False)
|
||||
rag_tuning = db.Column(db.Boolean, nullable=True, default=False)
|
||||
@@ -75,6 +74,7 @@ class Tenant(db.Model):
|
||||
'website': self.website,
|
||||
'timezone': self.timezone,
|
||||
'rag_context': self.rag_context,
|
||||
'type': self.type,
|
||||
'default_language': self.default_language,
|
||||
'allowed_languages': self.allowed_languages,
|
||||
'embedding_model': self.embedding_model,
|
||||
|
||||
114
common/utils/business_event.py
Normal file
114
common/utils/business_event.py
Normal file
@@ -0,0 +1,114 @@
|
||||
import os
|
||||
import uuid
|
||||
from contextlib import contextmanager
|
||||
from datetime import datetime
|
||||
from typing import Dict, Any, Optional
|
||||
from datetime import datetime as dt, timezone as tz
|
||||
from portkey_ai import Portkey, Config
|
||||
import logging
|
||||
|
||||
from .business_event_context import BusinessEventContext
|
||||
from common.models.monitoring import BusinessEventLog
|
||||
from common.extensions import db
|
||||
|
||||
|
||||
class BusinessEvent:
|
||||
# The BusinessEvent class itself is a context manager, but it doesn't use the @contextmanager decorator.
|
||||
# Instead, it defines __enter__ and __exit__ methods explicitly. This is because we're doing something a bit more
|
||||
# complex - we're interacting with the BusinessEventContext and the _business_event_stack.
|
||||
|
||||
def __init__(self, event_type: str, tenant_id: int, **kwargs):
|
||||
self.event_type = event_type
|
||||
self.tenant_id = tenant_id
|
||||
self.trace_id = str(uuid.uuid4())
|
||||
self.span_id = None
|
||||
self.span_name = None
|
||||
self.parent_span_id = None
|
||||
self.document_version_id = kwargs.get('document_version_id')
|
||||
self.chat_session_id = kwargs.get('chat_session_id')
|
||||
self.interaction_id = kwargs.get('interaction_id')
|
||||
self.environment = os.environ.get("FLASK_ENV", "development")
|
||||
self.span_counter = 0
|
||||
self.spans = []
|
||||
|
||||
def update_attribute(self, attribute: str, value: any):
|
||||
if hasattr(self, attribute):
|
||||
setattr(self, attribute, value)
|
||||
else:
|
||||
raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{attribute}'")
|
||||
|
||||
@contextmanager
|
||||
def create_span(self, span_name: str):
|
||||
# The create_span method is designed to be used as a context manager. We want to perform some actions when
|
||||
# entering the span (like setting the span ID and name) and some actions when exiting the span (like removing
|
||||
# these temporary attributes). The @contextmanager decorator allows us to write this method in a way that
|
||||
# clearly separates the "entry" and "exit" logic, with the yield statement in between.
|
||||
|
||||
parent_span_id = self.span_id
|
||||
self.span_counter += 1
|
||||
new_span_id = str(uuid.uuid4())
|
||||
|
||||
# Save the current span info
|
||||
self.spans.append((self.span_id, self.span_name, self.parent_span_id))
|
||||
|
||||
# Set the new span info
|
||||
self.span_id = new_span_id
|
||||
self.span_name = span_name
|
||||
self.parent_span_id = parent_span_id
|
||||
|
||||
self.log(f"Starting span {span_name}")
|
||||
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
self.log(f"Ending span {span_name}")
|
||||
# Restore the previous span info
|
||||
if self.spans:
|
||||
self.span_id, self.span_name, self.parent_span_id = self.spans.pop()
|
||||
else:
|
||||
self.span_id = None
|
||||
self.span_name = None
|
||||
self.parent_span_id = None
|
||||
|
||||
def log(self, message: str, level: str = 'info'):
|
||||
logger = logging.getLogger('business_events')
|
||||
log_data = {
|
||||
'event_type': self.event_type,
|
||||
'tenant_id': self.tenant_id,
|
||||
'trace_id': self.trace_id,
|
||||
'span_id': self.span_id,
|
||||
'span_name': self.span_name,
|
||||
'parent_span_id': self.parent_span_id,
|
||||
'document_version_id': self.document_version_id,
|
||||
'chat_session_id': self.chat_session_id,
|
||||
'interaction_id': self.interaction_id,
|
||||
'environment': self.environment
|
||||
}
|
||||
# log to Graylog
|
||||
getattr(logger, level)(message, extra=log_data)
|
||||
|
||||
# Log to database
|
||||
event_log = BusinessEventLog(
|
||||
timestamp=dt.now(tz=tz.utc),
|
||||
event_type=self.event_type,
|
||||
tenant_id=self.tenant_id,
|
||||
trace_id=self.trace_id,
|
||||
span_id=self.span_id,
|
||||
span_name=self.span_name,
|
||||
parent_span_id=self.parent_span_id,
|
||||
document_version_id=self.document_version_id,
|
||||
chat_session_id=self.chat_session_id,
|
||||
interaction_id=self.interaction_id,
|
||||
environment=self.environment,
|
||||
message=message
|
||||
)
|
||||
db.session.add(event_log)
|
||||
db.session.commit()
|
||||
|
||||
def __enter__(self):
|
||||
self.log(f'Starting Trace for {self.event_type}')
|
||||
return BusinessEventContext(self).__enter__()
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
self.log(f'Ending Trace for {self.event_type}')
|
||||
return BusinessEventContext(self).__exit__(exc_type, exc_val, exc_tb)
|
||||
25
common/utils/business_event_context.py
Normal file
25
common/utils/business_event_context.py
Normal file
@@ -0,0 +1,25 @@
|
||||
from werkzeug.local import LocalProxy, LocalStack
|
||||
|
||||
_business_event_stack = LocalStack()
|
||||
|
||||
|
||||
def _get_current_event():
|
||||
top = _business_event_stack.top
|
||||
if top is None:
|
||||
raise RuntimeError("No business event context found. Are you sure you're in a business event?")
|
||||
return top
|
||||
|
||||
|
||||
current_event = LocalProxy(_get_current_event)
|
||||
|
||||
|
||||
class BusinessEventContext:
|
||||
def __init__(self, event):
|
||||
self.event = event
|
||||
|
||||
def __enter__(self):
|
||||
_business_event_stack.push(self.event)
|
||||
return self.event
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
_business_event_stack.pop()
|
||||
@@ -23,6 +23,14 @@ def cors_after_request(response, prefix):
|
||||
current_app.logger.debug(f'request.args: {request.args}')
|
||||
current_app.logger.debug(f'request is json?: {request.is_json}')
|
||||
|
||||
# Exclude health checks from checks
|
||||
if request.path.startswith('/healthz') or request.path.startswith('/_healthz'):
|
||||
current_app.logger.debug('Skipping CORS headers for health checks')
|
||||
response.headers.add('Access-Control-Allow-Origin', '*')
|
||||
response.headers.add('Access-Control-Allow-Headers', '*')
|
||||
response.headers.add('Access-Control-Allow-Methods', '*')
|
||||
return response
|
||||
|
||||
tenant_id = None
|
||||
allowed_origins = []
|
||||
|
||||
|
||||
@@ -5,14 +5,16 @@ from flask import current_app
|
||||
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
||||
from langchain_anthropic import ChatAnthropic
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field
|
||||
from langchain.prompts import ChatPromptTemplate
|
||||
import ast
|
||||
from typing import List
|
||||
from typing import List, Any, Iterator
|
||||
from collections.abc import MutableMapping
|
||||
from openai import OpenAI
|
||||
# from groq import Groq
|
||||
from portkey_ai import createHeaders, PORTKEY_GATEWAY_URL
|
||||
from portkey_ai.langchain.portkey_langchain_callback_handler import LangchainCallbackHandler
|
||||
|
||||
from common.models.document import EmbeddingSmallOpenAI, EmbeddingLargeOpenAI
|
||||
from common.models.user import Tenant
|
||||
from config.model_config import MODEL_CONFIG
|
||||
from common.utils.business_event_context import current_event
|
||||
|
||||
|
||||
class CitedAnswer(BaseModel):
|
||||
@@ -36,180 +38,264 @@ def set_language_prompt_template(cls, language_prompt):
|
||||
cls.__doc__ = language_prompt
|
||||
|
||||
|
||||
class ModelVariables(MutableMapping):
|
||||
def __init__(self, tenant: Tenant):
|
||||
self.tenant = tenant
|
||||
self._variables = self._initialize_variables()
|
||||
self._embedding_model = None
|
||||
self._llm = None
|
||||
self._llm_no_rag = None
|
||||
self._transcription_client = None
|
||||
self._prompt_templates = {}
|
||||
self._embedding_db_model = None
|
||||
|
||||
def _initialize_variables(self):
|
||||
variables = {}
|
||||
|
||||
# We initialize the variables that are available knowing the tenant. For the other, we will apply 'lazy loading'
|
||||
variables['k'] = self.tenant.es_k or 5
|
||||
variables['similarity_threshold'] = self.tenant.es_similarity_threshold or 0.7
|
||||
variables['RAG_temperature'] = self.tenant.chat_RAG_temperature or 0.3
|
||||
variables['no_RAG_temperature'] = self.tenant.chat_no_RAG_temperature or 0.5
|
||||
variables['embed_tuning'] = self.tenant.embed_tuning or False
|
||||
variables['rag_tuning'] = self.tenant.rag_tuning or False
|
||||
variables['rag_context'] = self.tenant.rag_context or " "
|
||||
|
||||
# Set HTML Chunking Variables
|
||||
variables['html_tags'] = self.tenant.html_tags
|
||||
variables['html_end_tags'] = self.tenant.html_end_tags
|
||||
variables['html_included_elements'] = self.tenant.html_included_elements
|
||||
variables['html_excluded_elements'] = self.tenant.html_excluded_elements
|
||||
variables['html_excluded_classes'] = self.tenant.html_excluded_classes
|
||||
|
||||
# Set Chunk Size variables
|
||||
variables['min_chunk_size'] = self.tenant.min_chunk_size
|
||||
variables['max_chunk_size'] = self.tenant.max_chunk_size
|
||||
|
||||
# Set model providers
|
||||
variables['embedding_provider'], variables['embedding_model'] = self.tenant.embedding_model.rsplit('.', 1)
|
||||
variables['llm_provider'], variables['llm_model'] = self.tenant.llm_model.rsplit('.', 1)
|
||||
variables["templates"] = current_app.config['PROMPT_TEMPLATES'][(f"{variables['llm_provider']}."
|
||||
f"{variables['llm_model']}")]
|
||||
current_app.logger.info(f"Loaded prompt templates: \n")
|
||||
current_app.logger.info(f"{variables['templates']}")
|
||||
|
||||
# Set model-specific configurations
|
||||
model_config = MODEL_CONFIG.get(variables['llm_provider'], {}).get(variables['llm_model'], {})
|
||||
variables.update(model_config)
|
||||
|
||||
variables['annotation_chunk_length'] = current_app.config['ANNOTATION_TEXT_CHUNK_LENGTH'][self.tenant.llm_model]
|
||||
|
||||
if variables['tool_calling_supported']:
|
||||
variables['cited_answer_cls'] = CitedAnswer
|
||||
|
||||
return variables
|
||||
|
||||
@property
|
||||
def embedding_model(self):
|
||||
portkey_metadata = self.get_portkey_metadata()
|
||||
|
||||
portkey_headers = createHeaders(api_key=os.getenv('PORTKEY_API_KEY'),
|
||||
provider=self._variables['embedding_provider'],
|
||||
metadata=portkey_metadata,
|
||||
trace_id=current_event.trace_id,
|
||||
span_id=current_event.span_id,
|
||||
span_name=current_event.span_name,
|
||||
parent_span_id=current_event.parent_span_id
|
||||
)
|
||||
api_key = os.getenv('OPENAI_API_KEY')
|
||||
model = self._variables['embedding_model']
|
||||
self._embedding_model = OpenAIEmbeddings(api_key=api_key,
|
||||
model=model,
|
||||
base_url=PORTKEY_GATEWAY_URL,
|
||||
default_headers=portkey_headers)
|
||||
self._embedding_db_model = EmbeddingSmallOpenAI \
|
||||
if model == 'text-embedding-3-small' \
|
||||
else EmbeddingLargeOpenAI
|
||||
|
||||
return self._embedding_model
|
||||
|
||||
@property
|
||||
def llm(self):
|
||||
portkey_headers = self.get_portkey_headers_for_llm()
|
||||
api_key = self.get_api_key_for_llm()
|
||||
self._llm = ChatOpenAI(api_key=api_key,
|
||||
model=self._variables['llm_model'],
|
||||
temperature=self._variables['RAG_temperature'],
|
||||
base_url=PORTKEY_GATEWAY_URL,
|
||||
default_headers=portkey_headers)
|
||||
return self._llm
|
||||
|
||||
@property
|
||||
def llm_no_rag(self):
|
||||
portkey_headers = self.get_portkey_headers_for_llm()
|
||||
api_key = self.get_api_key_for_llm()
|
||||
self._llm_no_rag = ChatOpenAI(api_key=api_key,
|
||||
model=self._variables['llm_model'],
|
||||
temperature=self._variables['RAG_temperature'],
|
||||
base_url=PORTKEY_GATEWAY_URL,
|
||||
default_headers=portkey_headers)
|
||||
return self._llm_no_rag
|
||||
|
||||
def get_portkey_headers_for_llm(self):
|
||||
portkey_metadata = self.get_portkey_metadata()
|
||||
portkey_headers = createHeaders(api_key=os.getenv('PORTKEY_API_KEY'),
|
||||
metadata=portkey_metadata,
|
||||
provider=self._variables['llm_provider'],
|
||||
trace_id=current_event.trace_id,
|
||||
span_id=current_event.span_id,
|
||||
span_name=current_event.span_name,
|
||||
parent_span_id=current_event.parent_span_id
|
||||
)
|
||||
return portkey_headers
|
||||
|
||||
def get_portkey_metadata(self):
|
||||
environment = os.getenv('FLASK_ENV', 'development')
|
||||
portkey_metadata = {'tenant_id': str(self.tenant.id),
|
||||
'environment': environment,
|
||||
'trace_id': current_event.trace_id,
|
||||
'span_id': current_event.span_id,
|
||||
'span_name': current_event.span_name,
|
||||
'parent_span_id': current_event.parent_span_id,
|
||||
}
|
||||
return portkey_metadata
|
||||
|
||||
def get_api_key_for_llm(self):
|
||||
if self._variables['llm_provider'] == 'openai':
|
||||
api_key = os.getenv('OPENAI_API_KEY')
|
||||
else: # self._variables['llm_provider'] == 'anthropic'
|
||||
api_key = os.getenv('ANTHROPIC_API_KEY')
|
||||
|
||||
return api_key
|
||||
|
||||
# def _initialize_llm(self):
|
||||
#
|
||||
#
|
||||
# if self._variables['llm_provider'] == 'openai':
|
||||
# portkey_headers = createHeaders(api_key=os.getenv('PORTKEY_API_KEY'),
|
||||
# metadata=portkey_metadata,
|
||||
# provider='openai')
|
||||
#
|
||||
# self._llm = ChatOpenAI(api_key=api_key,
|
||||
# model=self._variables['llm_model'],
|
||||
# temperature=self._variables['RAG_temperature'],
|
||||
# base_url=PORTKEY_GATEWAY_URL,
|
||||
# default_headers=portkey_headers)
|
||||
# self._llm_no_rag = ChatOpenAI(api_key=api_key,
|
||||
# model=self._variables['llm_model'],
|
||||
# temperature=self._variables['no_RAG_temperature'],
|
||||
# base_url=PORTKEY_GATEWAY_URL,
|
||||
# default_headers=portkey_headers)
|
||||
# self._variables['tool_calling_supported'] = self._variables['llm_model'] in ['gpt-4o', 'gpt-4o-mini']
|
||||
# elif self._variables['llm_provider'] == 'anthropic':
|
||||
# api_key = os.getenv('ANTHROPIC_API_KEY')
|
||||
# llm_model_ext = os.getenv('ANTHROPIC_LLM_VERSIONS', {}).get(self._variables['llm_model'])
|
||||
# self._llm = ChatAnthropic(api_key=api_key,
|
||||
# model=llm_model_ext,
|
||||
# temperature=self._variables['RAG_temperature'])
|
||||
# self._llm_no_rag = ChatAnthropic(api_key=api_key,
|
||||
# model=llm_model_ext,
|
||||
# temperature=self._variables['RAG_temperature'])
|
||||
# self._variables['tool_calling_supported'] = True
|
||||
# else:
|
||||
# raise ValueError(f"Invalid chat provider: {self._variables['llm_provider']}")
|
||||
|
||||
@property
|
||||
def transcription_client(self):
|
||||
environment = os.getenv('FLASK_ENV', 'development')
|
||||
portkey_metadata = self.get_portkey_metadata()
|
||||
portkey_headers = createHeaders(api_key=os.getenv('PORTKEY_API_KEY'),
|
||||
metadata=portkey_metadata,
|
||||
provider='openai',
|
||||
trace_id=current_event.trace_id,
|
||||
span_id=current_event.span_id,
|
||||
span_name=current_event.span_name,
|
||||
parent_span_id=current_event.parent_span_id
|
||||
)
|
||||
api_key = os.getenv('OPENAI_API_KEY')
|
||||
self._transcription_client = OpenAI(api_key=api_key,
|
||||
base_url=PORTKEY_GATEWAY_URL,
|
||||
default_headers=portkey_headers)
|
||||
self._variables['transcription_model'] = 'whisper-1'
|
||||
return self._transcription_client
|
||||
|
||||
@property
|
||||
def embedding_db_model(self):
|
||||
if self._embedding_db_model is None:
|
||||
self._embedding_db_model = self.get_embedding_db_model()
|
||||
return self._embedding_db_model
|
||||
|
||||
def get_embedding_db_model(self):
|
||||
current_app.logger.debug("In get_embedding_db_model")
|
||||
if self._embedding_db_model is None:
|
||||
self._embedding_db_model = EmbeddingSmallOpenAI \
|
||||
if self._variables['embedding_model'] == 'text-embedding-3-small' \
|
||||
else EmbeddingLargeOpenAI
|
||||
current_app.logger.debug(f"Embedding DB Model: {self._embedding_db_model}")
|
||||
return self._embedding_db_model
|
||||
|
||||
def get_prompt_template(self, template_name: str) -> str:
|
||||
current_app.logger.info(f"Getting prompt template for {template_name}")
|
||||
if template_name not in self._prompt_templates:
|
||||
self._prompt_templates[template_name] = self._load_prompt_template(template_name)
|
||||
return self._prompt_templates[template_name]
|
||||
|
||||
def _load_prompt_template(self, template_name: str) -> str:
|
||||
# In the future, this method will make an API call to Portkey
|
||||
# For now, we'll simulate it with a placeholder implementation
|
||||
# You can replace this with your current prompt loading logic
|
||||
return self._variables['templates'][template_name]
|
||||
|
||||
def __getitem__(self, key: str) -> Any:
|
||||
current_app.logger.debug(f"ModelVariables: Getting {key}")
|
||||
# Support older template names (suffix = _template)
|
||||
if key.endswith('_template'):
|
||||
key = key[:-len('_template')]
|
||||
current_app.logger.debug(f"ModelVariables: Getting modified {key}")
|
||||
if key == 'embedding_model':
|
||||
return self.embedding_model
|
||||
elif key == 'embedding_db_model':
|
||||
return self.embedding_db_model
|
||||
elif key == 'llm':
|
||||
return self.llm
|
||||
elif key == 'llm_no_rag':
|
||||
return self.llm_no_rag
|
||||
elif key == 'transcription_client':
|
||||
return self.transcription_client
|
||||
elif key in self._variables.get('prompt_templates', []):
|
||||
return self.get_prompt_template(key)
|
||||
return self._variables.get(key)
|
||||
|
||||
def __setitem__(self, key: str, value: Any) -> None:
|
||||
self._variables[key] = value
|
||||
|
||||
def __delitem__(self, key: str) -> None:
|
||||
del self._variables[key]
|
||||
|
||||
def __iter__(self) -> Iterator[str]:
|
||||
return iter(self._variables)
|
||||
|
||||
def __len__(self):
|
||||
return len(self._variables)
|
||||
|
||||
def get(self, key: str, default: Any = None) -> Any:
|
||||
return self.__getitem__(key) or default
|
||||
|
||||
def update(self, **kwargs) -> None:
|
||||
self._variables.update(kwargs)
|
||||
|
||||
def items(self):
|
||||
return self._variables.items()
|
||||
|
||||
def keys(self):
|
||||
return self._variables.keys()
|
||||
|
||||
def values(self):
|
||||
return self._variables.values()
|
||||
|
||||
|
||||
def select_model_variables(tenant):
|
||||
embedding_provider = tenant.embedding_model.rsplit('.', 1)[0]
|
||||
embedding_model = tenant.embedding_model.rsplit('.', 1)[1]
|
||||
|
||||
llm_provider = tenant.llm_model.rsplit('.', 1)[0]
|
||||
llm_model = tenant.llm_model.rsplit('.', 1)[1]
|
||||
|
||||
# Set model variables
|
||||
model_variables = {}
|
||||
if tenant.es_k:
|
||||
model_variables['k'] = tenant.es_k
|
||||
else:
|
||||
model_variables['k'] = 5
|
||||
|
||||
if tenant.es_similarity_threshold:
|
||||
model_variables['similarity_threshold'] = tenant.es_similarity_threshold
|
||||
else:
|
||||
model_variables['similarity_threshold'] = 0.7
|
||||
|
||||
if tenant.chat_RAG_temperature:
|
||||
model_variables['RAG_temperature'] = tenant.chat_RAG_temperature
|
||||
else:
|
||||
model_variables['RAG_temperature'] = 0.3
|
||||
|
||||
if tenant.chat_no_RAG_temperature:
|
||||
model_variables['no_RAG_temperature'] = tenant.chat_no_RAG_temperature
|
||||
else:
|
||||
model_variables['no_RAG_temperature'] = 0.5
|
||||
|
||||
# Set Tuning variables
|
||||
if tenant.embed_tuning:
|
||||
model_variables['embed_tuning'] = tenant.embed_tuning
|
||||
else:
|
||||
model_variables['embed_tuning'] = False
|
||||
|
||||
if tenant.rag_tuning:
|
||||
model_variables['rag_tuning'] = tenant.rag_tuning
|
||||
else:
|
||||
model_variables['rag_tuning'] = False
|
||||
|
||||
if tenant.rag_context:
|
||||
model_variables['rag_context'] = tenant.rag_context
|
||||
else:
|
||||
model_variables['rag_context'] = " "
|
||||
|
||||
# Set HTML Chunking Variables
|
||||
model_variables['html_tags'] = tenant.html_tags
|
||||
model_variables['html_end_tags'] = tenant.html_end_tags
|
||||
model_variables['html_included_elements'] = tenant.html_included_elements
|
||||
model_variables['html_excluded_elements'] = tenant.html_excluded_elements
|
||||
model_variables['html_excluded_classes'] = tenant.html_excluded_classes
|
||||
|
||||
# Set Chunk Size variables
|
||||
model_variables['min_chunk_size'] = tenant.min_chunk_size
|
||||
model_variables['max_chunk_size'] = tenant.max_chunk_size
|
||||
|
||||
environment = os.getenv('FLASK_ENV', 'development')
|
||||
portkey_metadata = {'tenant_id': str(tenant.id), 'environment': environment}
|
||||
|
||||
# Set Embedding variables
|
||||
match embedding_provider:
|
||||
case 'openai':
|
||||
portkey_headers = createHeaders(api_key=current_app.config.get('PORTKEY_API_KEY'),
|
||||
provider='openai',
|
||||
metadata=portkey_metadata)
|
||||
match embedding_model:
|
||||
case 'text-embedding-3-small':
|
||||
api_key = current_app.config.get('OPENAI_API_KEY')
|
||||
model_variables['embedding_model'] = OpenAIEmbeddings(api_key=api_key,
|
||||
model='text-embedding-3-small',
|
||||
base_url=PORTKEY_GATEWAY_URL,
|
||||
default_headers=portkey_headers
|
||||
)
|
||||
model_variables['embedding_db_model'] = EmbeddingSmallOpenAI
|
||||
case 'text-embedding-3-large':
|
||||
api_key = current_app.config.get('OPENAI_API_KEY')
|
||||
model_variables['embedding_model'] = OpenAIEmbeddings(api_key=api_key,
|
||||
model='text-embedding-3-large',
|
||||
base_url=PORTKEY_GATEWAY_URL,
|
||||
default_headers=portkey_headers
|
||||
)
|
||||
model_variables['embedding_db_model'] = EmbeddingLargeOpenAI
|
||||
case _:
|
||||
raise Exception(f'Error setting model variables for tenant {tenant.id} '
|
||||
f'error: Invalid embedding model')
|
||||
case _:
|
||||
raise Exception(f'Error setting model variables for tenant {tenant.id} '
|
||||
f'error: Invalid embedding provider')
|
||||
|
||||
# Set Chat model variables
|
||||
match llm_provider:
|
||||
case 'openai':
|
||||
portkey_headers = createHeaders(api_key=current_app.config.get('PORTKEY_API_KEY'),
|
||||
metadata=portkey_metadata,
|
||||
provider='openai')
|
||||
tool_calling_supported = False
|
||||
api_key = current_app.config.get('OPENAI_API_KEY')
|
||||
model_variables['llm'] = ChatOpenAI(api_key=api_key,
|
||||
model=llm_model,
|
||||
temperature=model_variables['RAG_temperature'],
|
||||
base_url=PORTKEY_GATEWAY_URL,
|
||||
default_headers=portkey_headers)
|
||||
model_variables['llm_no_rag'] = ChatOpenAI(api_key=api_key,
|
||||
model=llm_model,
|
||||
temperature=model_variables['no_RAG_temperature'],
|
||||
base_url=PORTKEY_GATEWAY_URL,
|
||||
default_headers=portkey_headers)
|
||||
tool_calling_supported = False
|
||||
match llm_model:
|
||||
case 'gpt-4o' | 'gpt-4o-mini':
|
||||
tool_calling_supported = True
|
||||
PDF_chunk_size = 10000
|
||||
PDF_chunk_overlap = 200
|
||||
PDF_min_chunk_size = 8000
|
||||
PDF_max_chunk_size = 12000
|
||||
case _:
|
||||
raise Exception(f'Error setting model variables for tenant {tenant.id} '
|
||||
f'error: Invalid chat model')
|
||||
case 'anthropic':
|
||||
api_key = current_app.config.get('ANTHROPIC_API_KEY')
|
||||
# Anthropic does not have the same 'generic' model names as OpenAI
|
||||
llm_model_ext = current_app.config.get('ANTHROPIC_LLM_VERSIONS').get(llm_model)
|
||||
model_variables['llm'] = ChatAnthropic(api_key=api_key,
|
||||
model=llm_model_ext,
|
||||
temperature=model_variables['RAG_temperature'])
|
||||
model_variables['llm_no_rag'] = ChatAnthropic(api_key=api_key,
|
||||
model=llm_model_ext,
|
||||
temperature=model_variables['RAG_temperature'])
|
||||
tool_calling_supported = True
|
||||
PDF_chunk_size = 10000
|
||||
PDF_chunk_overlap = 200
|
||||
PDF_min_chunk_size = 8000
|
||||
PDF_max_chunk_size = 12000
|
||||
case _:
|
||||
raise Exception(f'Error setting model variables for tenant {tenant.id} '
|
||||
f'error: Invalid chat provider')
|
||||
|
||||
model_variables['PDF_chunk_size'] = PDF_chunk_size
|
||||
model_variables['PDF_chunk_overlap'] = PDF_chunk_overlap
|
||||
model_variables['PDF_min_chunk_size'] = PDF_min_chunk_size
|
||||
model_variables['PDF_max_chunk_size'] = PDF_max_chunk_size
|
||||
|
||||
if tool_calling_supported:
|
||||
model_variables['cited_answer_cls'] = CitedAnswer
|
||||
|
||||
templates = current_app.config['PROMPT_TEMPLATES'][f'{llm_provider}.{llm_model}']
|
||||
model_variables['summary_template'] = templates['summary']
|
||||
model_variables['rag_template'] = templates['rag']
|
||||
model_variables['history_template'] = templates['history']
|
||||
model_variables['encyclopedia_template'] = templates['encyclopedia']
|
||||
model_variables['transcript_template'] = templates['transcript']
|
||||
model_variables['html_parse_template'] = templates['html_parse']
|
||||
model_variables['pdf_parse_template'] = templates['pdf_parse']
|
||||
|
||||
model_variables['annotation_chunk_length'] = current_app.config['ANNOTATION_TEXT_CHUNK_LENGTH'][tenant.llm_model]
|
||||
|
||||
# Transcription Client Variables.
|
||||
# Using Groq
|
||||
# api_key = current_app.config.get('GROQ_API_KEY')
|
||||
# model_variables['transcription_client'] = Groq(api_key=api_key)
|
||||
# model_variables['transcription_model'] = 'whisper-large-v3'
|
||||
|
||||
# Using OpenAI for transcriptions
|
||||
portkey_metadata = {'tenant_id': str(tenant.id)}
|
||||
portkey_headers = createHeaders(api_key=current_app.config.get('PORTKEY_API_KEY'),
|
||||
metadata=portkey_metadata,
|
||||
provider='openai'
|
||||
)
|
||||
api_key = current_app.config.get('OPENAI_API_KEY')
|
||||
model_variables['transcription_client'] = OpenAI(api_key=api_key,
|
||||
base_url=PORTKEY_GATEWAY_URL,
|
||||
default_headers=portkey_headers)
|
||||
model_variables['transcription_model'] = 'whisper-1'
|
||||
|
||||
model_variables = ModelVariables(tenant=tenant)
|
||||
return model_variables
|
||||
|
||||
|
||||
|
||||
99
common/utils/portkey_utils.py
Normal file
99
common/utils/portkey_utils.py
Normal file
@@ -0,0 +1,99 @@
|
||||
import requests
|
||||
import json
|
||||
from typing import Optional
|
||||
|
||||
# Define a function to make the GET request
|
||||
def get_metadata_grouped_data(
|
||||
api_key: str,
|
||||
metadata_key: str,
|
||||
time_of_generation_min: Optional[str] = None,
|
||||
time_of_generation_max: Optional[str] = None,
|
||||
total_units_min: Optional[int] = None,
|
||||
total_units_max: Optional[int] = None,
|
||||
cost_min: Optional[float] = None,
|
||||
cost_max: Optional[float] = None,
|
||||
prompt_token_min: Optional[int] = None,
|
||||
prompt_token_max: Optional[int] = None,
|
||||
completion_token_min: Optional[int] = None,
|
||||
completion_token_max: Optional[int] = None,
|
||||
status_code: Optional[str] = None,
|
||||
weighted_feedback_min: Optional[float] = None,
|
||||
weighted_feedback_max: Optional[float] = None,
|
||||
virtual_keys: Optional[str] = None,
|
||||
configs: Optional[str] = None,
|
||||
workspace_slug: Optional[str] = None,
|
||||
api_key_ids: Optional[str] = None,
|
||||
current_page: Optional[int] = 1,
|
||||
page_size: Optional[int] = 20,
|
||||
metadata: Optional[str] = None,
|
||||
ai_org_model: Optional[str] = None,
|
||||
trace_id: Optional[str] = None,
|
||||
span_id: Optional[str] = None,
|
||||
):
|
||||
url = f"https://api.portkey.ai/v1/analytics/groups/metadata/{metadata_key}"
|
||||
|
||||
# Set up query parameters
|
||||
params = {
|
||||
"time_of_generation_min": time_of_generation_min,
|
||||
"time_of_generation_max": time_of_generation_max,
|
||||
"total_units_min": total_units_min,
|
||||
"total_units_max": total_units_max,
|
||||
"cost_min": cost_min,
|
||||
"cost_max": cost_max,
|
||||
"prompt_token_min": prompt_token_min,
|
||||
"prompt_token_max": prompt_token_max,
|
||||
"completion_token_min": completion_token_min,
|
||||
"completion_token_max": completion_token_max,
|
||||
"status_code": status_code,
|
||||
"weighted_feedback_min": weighted_feedback_min,
|
||||
"weighted_feedback_max": weighted_feedback_max,
|
||||
"virtual_keys": virtual_keys,
|
||||
"configs": configs,
|
||||
"workspace_slug": workspace_slug,
|
||||
"api_key_ids": api_key_ids,
|
||||
"current_page": current_page,
|
||||
"page_size": page_size,
|
||||
"metadata": metadata,
|
||||
"ai_org_model": ai_org_model,
|
||||
"trace_id": trace_id,
|
||||
"span_id": span_id,
|
||||
}
|
||||
|
||||
# Remove any keys with None values
|
||||
params = {k: v for k, v in params.items() if v is not None}
|
||||
|
||||
# Set up the headers
|
||||
headers = {
|
||||
"Authorization": f"Bearer {api_key}",
|
||||
"Content-Type": "application/json"
|
||||
}
|
||||
|
||||
# Make the GET request
|
||||
response = requests.get(url, headers=headers, params=params)
|
||||
|
||||
# Check for successful response
|
||||
if response.status_code == 200:
|
||||
return response.json() # Return JSON data
|
||||
else:
|
||||
response.raise_for_status() # Raise an exception for errors
|
||||
|
||||
# Example usage
|
||||
# Replace 'your_api_key' and 'your_metadata_key' with actual values
|
||||
api_key = 'your_api_key'
|
||||
metadata_key = 'your_metadata_key'
|
||||
|
||||
try:
|
||||
data = get_metadata_grouped_data(
|
||||
api_key=api_key,
|
||||
metadata_key=metadata_key,
|
||||
time_of_generation_min="2024-08-23T15:50:23+05:30",
|
||||
time_of_generation_max="2024-09-23T15:50:23+05:30",
|
||||
total_units_min=100,
|
||||
total_units_max=1000,
|
||||
cost_min=10,
|
||||
cost_max=100,
|
||||
status_code="200,201"
|
||||
)
|
||||
print(json.dumps(data, indent=4))
|
||||
except Exception as e:
|
||||
print(f"Error occurred: {str(e)}")
|
||||
@@ -1,4 +1,4 @@
|
||||
from flask import flash
|
||||
from flask import flash, current_app
|
||||
|
||||
|
||||
def prepare_table(model_objects, column_names):
|
||||
@@ -44,7 +44,8 @@ def form_validation_failed(request, form):
|
||||
for fieldName, errorMessages in form.errors.items():
|
||||
for err in errorMessages:
|
||||
flash(f"Error in {fieldName}: {err}", 'danger')
|
||||
current_app.logger.debug(f"Error in {fieldName}: {err}", 'danger')
|
||||
|
||||
|
||||
def form_to_dict(form):
|
||||
return {field.name: field.data for field in form if field.name != 'csrf_token' and hasattr(field, 'data')}
|
||||
return {field.name: field.data for field in form if field.name != 'csrf_token' and hasattr(field, 'data')}
|
||||
|
||||
@@ -137,9 +137,15 @@ class Config(object):
|
||||
MAIL_PASSWORD = environ.get('MAIL_PASSWORD')
|
||||
MAIL_DEFAULT_SENDER = ('eveAI Admin', MAIL_USERNAME)
|
||||
|
||||
# Langsmith settings
|
||||
LANGCHAIN_TRACING_V2 = True
|
||||
LANGCHAIN_ENDPOINT = 'https://api.smith.langchain.com'
|
||||
LANGCHAIN_PROJECT = "eveai"
|
||||
|
||||
|
||||
SUPPORTED_FILE_TYPES = ['pdf', 'html', 'md', 'txt', 'mp3', 'mp4', 'ogg', 'srt']
|
||||
|
||||
|
||||
TENANT_TYPES = ['Active', 'Demo', 'Inactive', 'Test']
|
||||
|
||||
|
||||
class DevConfig(Config):
|
||||
|
||||
@@ -1,13 +0,0 @@
|
||||
{
|
||||
"type": "service_account",
|
||||
"project_id": "eveai-420711",
|
||||
"private_key_id": "e666408e75793321a6134243628346722a71b3a6",
|
||||
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQCaGTXCWpq08YD1\nOW4z+gncOlB7T/EIiEwsZgMp6pyUrNioGfiI9YN+uVR0nsUSmFf1YyerRgX7RqD5\nRc7T/OuX8iIvmloK3g7CaFezcVrjnBKcg/QsjDAt/OO3DTk4vykDlh/Kqxx73Jdv\nFH9YSV2H7ToWqIE8CTDnqe8vQS7Bq995c9fPlues31MgndRFg3CFkH0ldfZ4aGm3\n1RnBDyC+9SPQW9e7CJgNN9PWTmOT51Zyy5IRuV5OWePMQaGLVmCo5zNc/EHZEVRu\n1hxJPHL3NNmkYDY8tye8uHgjsAkv8QuwIuUSqnqjoo1/Yg+P0+9GCpePOAJRNxJS\n0YpDFWc5AgMBAAECggEACIU4/hG+bh97BD7JriFhfDDT6bg7g+pCs/hsAlxQ42jv\nOH7pyWuHJXGf5Cwx31usZAq4fcrgYnVpnyl8odIL628y9AjdI66wMuWhZnBFGJgK\nRhHcZWjW8nlXf0lBjwwFe4edzbn1AuWT5fYZ2HWDW2mthY/e8sUwqWPcWsjdifhz\nNR7V+Ia47McKXYgEKjyEObSP1NUOW24zH0DgxS52YPMwa1FoHn6+9Pr8P3TsTSO6\nh6f8tnd81DGl1UH4F5Bj/MHsQXyAMJbu44S4+rZ4Qlk+5xPp9hfCNpxWaHLIkJCg\nYXnC8UAjjyXiqyK0U0RjJf8TS1FxUI4iPepLNqp/pQKBgQDTicZnWFXmCFTnycWp\n66P3Yx0yvlKdUdfnoD/n9NdmUA3TZUlEVfb0IOm7ZFubF/zDTH87XrRiD/NVDbr8\n6bdhA1DXzraxhbfD36Hca6K74Ba4aYJsSWWwI0hL3FDSsv8c7qAIaUF2iwuHb7Y0\nRDcvZqowtQobcQC8cHLc/bI/ZwKBgQC6fMeGaU+lP6jhp9Nb/3Gz5Z1zzCu34IOo\nlgpTNZsowRKYLtjHifrEFi3XRxPKz5thMuJFniof5U4WoMYtRXy+PbgySvBpCia2\nXty05XssnLLMvLpYU5sbQvmOTe20zaIzLohRvvmqrydYIKu62NTubNeuD1L+Zr0q\nz1P5/wUgXwKBgQCW9MrRFQi3j1qHzkVwbOglsmUzwP3TpoQclw8DyIWuTZKQOMeA\nLJh+vr4NLCDzHLsT45MoGv0+vYM4PwQhV+e1I1idqLZXGMV60iv/0A/hYpjUIPch\nr38RoxwEhsRml7XWP7OUTQiaP7+Kdv3fbo6zFOB+wbLkwk90KgrOCX0aIQKBgFeK\n7esmErJjMPdFXk3om0q09nX+mWNHLOb+EDjBiGXYRM9V5oO9PQ/BzaEqh5sEXE+D\noH7H4cR5U3AB5yYnYYi41ngdf7//eO7Rl1AADhOCN9kum1eNX9mrVhU8deMTSRo3\ntNyTBwbeFF0lcRhUY5jNVW4rWW19cz3ed/B6i8CHAoGBAJ/l5rkV74Z5hg6BWNfQ\nYAg/4PLZmjnXIy5QdnWc/PYgbhn5+iVUcL9fSofFzJM1rjFnNcs3S90MGeOmfmo4\nM1WtcQFQbsCGt6+G5uEL/nf74mKUGpOqEM/XSkZ3inweWiDk3LK3iYfXCMBFouIr\n80IlzI1yMf7MVmWn3e1zPjCA\n-----END PRIVATE KEY-----\n",
|
||||
"client_email": "eveai-349@eveai-420711.iam.gserviceaccount.com",
|
||||
"client_id": "109927035346319712442",
|
||||
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
||||
"token_uri": "https://oauth2.googleapis.com/token",
|
||||
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
||||
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/eveai-349%40eveai-420711.iam.gserviceaccount.com",
|
||||
"universe_domain": "googleapis.com"
|
||||
}
|
||||
@@ -12,7 +12,12 @@ env = os.environ.get('FLASK_ENV', 'development')
|
||||
class CustomLogRecord(logging.LogRecord):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.component = os.environ.get('COMPONENT_NAME', 'eveai_app') # Set default component value here
|
||||
self.component = os.environ.get('COMPONENT_NAME', 'eveai_app')
|
||||
|
||||
def __setattr__(self, name, value):
|
||||
if name not in {'event_type', 'tenant_id', 'trace_id', 'span_id', 'span_name', 'parent_span_id',
|
||||
'document_version_id', 'chat_session_id', 'interaction_id', 'environment'}:
|
||||
super().__setattr__(name, value)
|
||||
|
||||
|
||||
def custom_log_record_factory(*args, **kwargs):
|
||||
@@ -108,6 +113,14 @@ LOGGING = {
|
||||
'backupCount': 10,
|
||||
'formatter': 'standard',
|
||||
},
|
||||
'file_business_events': {
|
||||
'level': 'INFO',
|
||||
'class': 'logging.handlers.RotatingFileHandler',
|
||||
'filename': 'logs/business_events.log',
|
||||
'maxBytes': 1024 * 1024 * 5, # 5MB
|
||||
'backupCount': 10,
|
||||
'formatter': 'standard',
|
||||
},
|
||||
'console': {
|
||||
'class': 'logging.StreamHandler',
|
||||
'level': 'DEBUG',
|
||||
@@ -184,6 +197,11 @@ LOGGING = {
|
||||
'level': 'DEBUG',
|
||||
'propagate': False
|
||||
},
|
||||
'business_events': {
|
||||
'handlers': ['file_business_events', 'graylog'],
|
||||
'level': 'DEBUG',
|
||||
'propagate': False
|
||||
},
|
||||
'': { # root logger
|
||||
'handlers': ['console'],
|
||||
'level': 'WARNING', # Set higher level for root to minimize noise
|
||||
|
||||
41
config/model_config.py
Normal file
41
config/model_config.py
Normal file
@@ -0,0 +1,41 @@
|
||||
MODEL_CONFIG = {
|
||||
"openai": {
|
||||
"gpt-4o": {
|
||||
"tool_calling_supported": True,
|
||||
"processing_chunk_size": 10000,
|
||||
"processing_chunk_overlap": 200,
|
||||
"processing_min_chunk_size": 8000,
|
||||
"processing_max_chunk_size": 12000,
|
||||
"prompt_templates": [
|
||||
"summary", "rag", "history", "encyclopedia",
|
||||
"transcript", "html_parse", "pdf_parse"
|
||||
]
|
||||
},
|
||||
"gpt-4o-mini": {
|
||||
"tool_calling_supported": True,
|
||||
"processing_chunk_size": 10000,
|
||||
"processing_chunk_overlap": 200,
|
||||
"processing_min_chunk_size": 8000,
|
||||
"processing_max_chunk_size": 12000,
|
||||
"prompt_templates": [
|
||||
"summary", "rag", "history", "encyclopedia",
|
||||
"transcript", "html_parse", "pdf_parse"
|
||||
]
|
||||
},
|
||||
# Add other OpenAI models here
|
||||
},
|
||||
"anthropic": {
|
||||
"claude-3-5-sonnet": {
|
||||
"tool_calling_supported": True,
|
||||
"processing_chunk_size": 10000,
|
||||
"processing_chunk_overlap": 200,
|
||||
"processing_min_chunk_size": 8000,
|
||||
"processing_max_chunk_size": 12000,
|
||||
"prompt_templates": [
|
||||
"summary", "rag", "history", "encyclopedia",
|
||||
"transcript", "html_parse", "pdf_parse"
|
||||
]
|
||||
},
|
||||
# Add other Anthropic models here
|
||||
},
|
||||
}
|
||||
@@ -65,11 +65,13 @@ encyclopedia: |
|
||||
|
||||
transcript: |
|
||||
You are a top administrative assistant specialized in transforming given transcriptions into markdown formatted files. The generated files will be used to generate embeddings in a RAG-system. The transcriptions originate from podcast, videos and similar material.
|
||||
You may receive information in different chunks. If you're not receiving the first chunk, you'll get the last part of the previous chunk, including it's title in between triple $. Consider this last part and the title as the start of the new chunk.
|
||||
|
||||
|
||||
# Best practices and steps are:
|
||||
- Respect wordings and language(s) used in the transcription. Main language is {language}.
|
||||
- Sometimes, the transcript contains speech of several people participating in a conversation. Although these are not obvious from reading the file, try to detect when other people are speaking.
|
||||
- Divide the transcript into several logical parts. Ensure questions and their answers are in the same logical part.
|
||||
- Divide the transcript into several logical parts. Ensure questions and their answers are in the same logical part. Don't make logical parts too small. They should contain at least 7 or 8 sentences.
|
||||
- annotate the text to identify these logical parts using headings in {language}.
|
||||
- improve errors in the transcript given the context, but do not change the meaning and intentions of the transcription.
|
||||
|
||||
@@ -77,4 +79,6 @@ transcript: |
|
||||
|
||||
The transcript is between triple backquotes.
|
||||
|
||||
$$${previous_part}$$$
|
||||
|
||||
```{transcript}```
|
||||
@@ -141,7 +141,7 @@ if [ $# -eq 0 ]; then
|
||||
SERVICES=()
|
||||
while IFS= read -r line; do
|
||||
SERVICES+=("$line")
|
||||
done < <(yq e '.services | keys | .[]' compose_dev.yaml | grep -E '^(nginx|eveai_)')
|
||||
done < <(yq e '.services | keys | .[]' compose_dev.yaml | grep -E '^(nginx|eveai_|flower)')
|
||||
else
|
||||
SERVICES=("$@")
|
||||
fi
|
||||
@@ -158,7 +158,7 @@ docker buildx use eveai_builder
|
||||
|
||||
# Loop through services
|
||||
for SERVICE in "${SERVICES[@]}"; do
|
||||
if [[ "$SERVICE" == "nginx" || "$SERVICE" == eveai_* ]]; then
|
||||
if [[ "$SERVICE" == "nginx" || "$SERVICE" == eveai_* || "$SERVICE" == "flower" ]]; then
|
||||
if process_service "$SERVICE"; then
|
||||
echo "Successfully processed $SERVICE"
|
||||
else
|
||||
|
||||
@@ -22,6 +22,8 @@ x-common-variables: &common-variables
|
||||
MAIL_PASSWORD: '$$6xsWGbNtx$$CFMQZqc*'
|
||||
MAIL_SERVER: mail.flow-it.net
|
||||
MAIL_PORT: 465
|
||||
REDIS_URL: redis
|
||||
REDIS_PORT: '6379'
|
||||
OPENAI_API_KEY: 'sk-proj-8R0jWzwjL7PeoPyMhJTZT3BlbkFJLb6HfRB2Hr9cEVFWEhU7'
|
||||
GROQ_API_KEY: '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'
|
||||
ANTHROPIC_API_KEY: 'sk-ant-api03-c2TmkzbReeGhXBO5JxNH6BJNylRDonc9GmZd0eRbrvyekec2'
|
||||
@@ -32,6 +34,7 @@ x-common-variables: &common-variables
|
||||
MINIO_ACCESS_KEY: minioadmin
|
||||
MINIO_SECRET_KEY: minioadmin
|
||||
NGINX_SERVER_NAME: 'localhost http://macstudio.ask-eve-ai-local.com/'
|
||||
LANGCHAIN_API_KEY: "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"
|
||||
|
||||
|
||||
networks:
|
||||
@@ -96,12 +99,11 @@ services:
|
||||
minio:
|
||||
condition: service_healthy
|
||||
healthcheck:
|
||||
test: ["CMD", "curl", "-f", "http://localhost:5001/health"]
|
||||
interval: 10s
|
||||
timeout: 5s
|
||||
retries: 5
|
||||
# entrypoint: ["scripts/entrypoint.sh"]
|
||||
# command: ["scripts/start_eveai_app.sh"]
|
||||
test: ["CMD", "curl", "-f", "http://localhost:5001/healthz/ready"]
|
||||
interval: 30s
|
||||
timeout: 1s
|
||||
retries: 3
|
||||
start_period: 30s
|
||||
networks:
|
||||
- eveai-network
|
||||
|
||||
@@ -113,8 +115,6 @@ services:
|
||||
platforms:
|
||||
- linux/amd64
|
||||
- linux/arm64
|
||||
# ports:
|
||||
# - 5001:5001
|
||||
environment:
|
||||
<<: *common-variables
|
||||
COMPONENT_NAME: eveai_workers
|
||||
@@ -132,13 +132,6 @@ services:
|
||||
condition: service_healthy
|
||||
minio:
|
||||
condition: service_healthy
|
||||
# healthcheck:
|
||||
# test: [ "CMD", "curl", "-f", "http://localhost:5001/health" ]
|
||||
# interval: 10s
|
||||
# timeout: 5s
|
||||
# retries: 5
|
||||
# entrypoint: [ "sh", "-c", "scripts/entrypoint.sh" ]
|
||||
# command: [ "sh", "-c", "scripts/start_eveai_workers.sh" ]
|
||||
networks:
|
||||
- eveai-network
|
||||
|
||||
@@ -168,12 +161,11 @@ services:
|
||||
redis:
|
||||
condition: service_healthy
|
||||
healthcheck:
|
||||
test: [ "CMD", "curl", "-f", "http://localhost:5002/health" ] # Adjust based on your health endpoint
|
||||
interval: 10s
|
||||
timeout: 5s
|
||||
retries: 5
|
||||
# entrypoint: [ "sh", "-c", "scripts/entrypoint.sh" ]
|
||||
# command: ["sh", "-c", "scripts/start_eveai_chat.sh"]
|
||||
test: [ "CMD", "curl", "-f", "http://localhost:5002/healthz/ready" ] # Adjust based on your health endpoint
|
||||
interval: 30s
|
||||
timeout: 1s
|
||||
retries: 3
|
||||
start_period: 30s
|
||||
networks:
|
||||
- eveai-network
|
||||
|
||||
@@ -185,8 +177,6 @@ services:
|
||||
platforms:
|
||||
- linux/amd64
|
||||
- linux/arm64
|
||||
# ports:
|
||||
# - 5001:5001
|
||||
environment:
|
||||
<<: *common-variables
|
||||
COMPONENT_NAME: eveai_chat_workers
|
||||
@@ -202,13 +192,6 @@ services:
|
||||
condition: service_healthy
|
||||
redis:
|
||||
condition: service_healthy
|
||||
# healthcheck:
|
||||
# test: [ "CMD", "curl", "-f", "http://localhost:5001/health" ]
|
||||
# interval: 10s
|
||||
# timeout: 5s
|
||||
# retries: 5
|
||||
# entrypoint: [ "sh", "-c", "scripts/entrypoint.sh" ]
|
||||
# command: [ "sh", "-c", "scripts/start_eveai_chat_workers.sh" ]
|
||||
networks:
|
||||
- eveai-network
|
||||
|
||||
@@ -240,12 +223,11 @@ services:
|
||||
minio:
|
||||
condition: service_healthy
|
||||
healthcheck:
|
||||
test: [ "CMD", "curl", "-f", "http://localhost:5003/health" ]
|
||||
interval: 10s
|
||||
timeout: 5s
|
||||
retries: 5
|
||||
# entrypoint: ["scripts/entrypoint.sh"]
|
||||
# command: ["scripts/start_eveai_api.sh"]
|
||||
test: [ "CMD", "curl", "-f", "http://localhost:5003/healthz/ready" ]
|
||||
interval: 30s
|
||||
timeout: 1s
|
||||
retries: 3
|
||||
start_period: 30s
|
||||
networks:
|
||||
- eveai-network
|
||||
|
||||
@@ -285,6 +267,22 @@ services:
|
||||
networks:
|
||||
- eveai-network
|
||||
|
||||
flower:
|
||||
image: josakola/flower:latest
|
||||
build:
|
||||
context: ..
|
||||
dockerfile: ./docker/flower/Dockerfile
|
||||
environment:
|
||||
<<: *common-variables
|
||||
volumes:
|
||||
- ../scripts:/app/scripts
|
||||
ports:
|
||||
- "5555:5555"
|
||||
depends_on:
|
||||
- redis
|
||||
networks:
|
||||
- eveai-network
|
||||
|
||||
minio:
|
||||
image: minio/minio
|
||||
ports:
|
||||
|
||||
@@ -21,11 +21,13 @@ x-common-variables: &common-variables
|
||||
MAIL_USERNAME: 'evie_admin@askeveai.com'
|
||||
MAIL_PASSWORD: 's5D%R#y^v!s&6Z^i0k&'
|
||||
MAIL_SERVER: mail.askeveai.com
|
||||
MAIL_PORT: 465
|
||||
MAIL_PORT: '465'
|
||||
REDIS_USER: eveai
|
||||
REDIS_PASS: 'jHliZwGD36sONgbm0fc6SOpzLbknqq4RNF8K'
|
||||
REDIS_URL: 8bciqc.stackhero-network.com
|
||||
REDIS_PORT: '9961'
|
||||
FLOWER_USER: 'Felucia'
|
||||
FLOWER_PASSWORD: 'Jungles'
|
||||
OPENAI_API_KEY: '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'
|
||||
GROQ_API_KEY: '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'
|
||||
ANTHROPIC_API_KEY: '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'
|
||||
@@ -38,6 +40,7 @@ x-common-variables: &common-variables
|
||||
MINIO_ACCESS_KEY: 04JKmQln8PQpyTmMiCPc
|
||||
MINIO_SECRET_KEY: 2PEZAD1nlpAmOyDV0TUTuJTQw1qVuYLF3A7GMs0D
|
||||
NGINX_SERVER_NAME: 'evie.askeveai.com mxz536.stackhero-network.com'
|
||||
LANGCHAIN_API_KEY: "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"
|
||||
|
||||
networks:
|
||||
eveai-network:
|
||||
@@ -53,10 +56,6 @@ services:
|
||||
environment:
|
||||
<<: *common-variables
|
||||
volumes:
|
||||
# - ../nginx:/etc/nginx
|
||||
# - ../nginx/sites-enabled:/etc/nginx/sites-enabled
|
||||
# - ../nginx/static:/etc/nginx/static
|
||||
# - ../nginx/public:/etc/nginx/public
|
||||
- eveai_logs:/var/log/nginx
|
||||
labels:
|
||||
- "traefik.enable=true"
|
||||
@@ -81,7 +80,7 @@ services:
|
||||
volumes:
|
||||
- eveai_logs:/app/logs
|
||||
healthcheck:
|
||||
test: ["CMD", "curl", "-f", "http://localhost:5001/health"]
|
||||
test: ["CMD", "curl", "-f", "http://localhost:5001/healthz/ready"]
|
||||
interval: 10s
|
||||
timeout: 5s
|
||||
retries: 5
|
||||
@@ -91,18 +90,11 @@ services:
|
||||
eveai_workers:
|
||||
platform: linux/amd64
|
||||
image: josakola/eveai_workers:latest
|
||||
# ports:
|
||||
# - 5001:5001
|
||||
environment:
|
||||
<<: *common-variables
|
||||
COMPONENT_NAME: eveai_workers
|
||||
volumes:
|
||||
- eveai_logs:/app/logs
|
||||
# healthcheck:
|
||||
# test: [ "CMD", "curl", "-f", "http://localhost:5001/health" ]
|
||||
# interval: 10s
|
||||
# timeout: 5s
|
||||
# retries: 5
|
||||
networks:
|
||||
- eveai-network
|
||||
|
||||
@@ -117,7 +109,7 @@ services:
|
||||
volumes:
|
||||
- eveai_logs:/app/logs
|
||||
healthcheck:
|
||||
test: [ "CMD", "curl", "-f", "http://localhost:5002/health" ] # Adjust based on your health endpoint
|
||||
test: [ "CMD", "curl", "-f", "http://localhost:5002/healthz/ready" ] # Adjust based on your health endpoint
|
||||
interval: 10s
|
||||
timeout: 5s
|
||||
retries: 5
|
||||
@@ -127,18 +119,11 @@ services:
|
||||
eveai_chat_workers:
|
||||
platform: linux/amd64
|
||||
image: josakola/eveai_chat_workers:latest
|
||||
# ports:
|
||||
# - 5001:5001
|
||||
environment:
|
||||
<<: *common-variables
|
||||
COMPONENT_NAME: eveai_chat_workers
|
||||
volumes:
|
||||
- eveai_logs:/app/logs
|
||||
# healthcheck:
|
||||
# test: [ "CMD", "curl", "-f", "http://localhost:5001/health" ]
|
||||
# interval: 10s
|
||||
# timeout: 5s
|
||||
# retries: 5
|
||||
networks:
|
||||
- eveai-network
|
||||
|
||||
@@ -153,20 +138,23 @@ services:
|
||||
volumes:
|
||||
- eveai_logs:/app/logs
|
||||
healthcheck:
|
||||
test: [ "CMD", "curl", "-f", "http://localhost:5001/health" ]
|
||||
test: [ "CMD", "curl", "-f", "http://localhost:5003/healthz/ready" ]
|
||||
interval: 10s
|
||||
timeout: 5s
|
||||
retries: 5
|
||||
networks:
|
||||
- eveai-network
|
||||
|
||||
flower:
|
||||
image: josakola/flower:latest
|
||||
environment:
|
||||
<<: *common-variables
|
||||
ports:
|
||||
- "5555:5555"
|
||||
networks:
|
||||
- eveai-network
|
||||
|
||||
volumes:
|
||||
eveai_logs:
|
||||
# miniAre theo_data:
|
||||
# db-data:
|
||||
# redis-data:
|
||||
# tenant-files:
|
||||
#secrets:
|
||||
# db-password:
|
||||
# file: ./db/password.txt
|
||||
|
||||
|
||||
|
||||
@@ -34,6 +34,7 @@ RUN apt-get update && apt-get install -y \
|
||||
build-essential \
|
||||
gcc \
|
||||
postgresql-client \
|
||||
curl \
|
||||
&& apt-get clean \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
|
||||
@@ -34,6 +34,7 @@ RUN apt-get update && apt-get install -y \
|
||||
build-essential \
|
||||
gcc \
|
||||
postgresql-client \
|
||||
curl \
|
||||
&& apt-get clean \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
|
||||
@@ -34,6 +34,7 @@ RUN apt-get update && apt-get install -y \
|
||||
build-essential \
|
||||
gcc \
|
||||
postgresql-client \
|
||||
curl \
|
||||
&& apt-get clean \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
|
||||
34
docker/flower/Dockerfile
Normal file
34
docker/flower/Dockerfile
Normal file
@@ -0,0 +1,34 @@
|
||||
ARG PYTHON_VERSION=3.12.3
|
||||
FROM python:${PYTHON_VERSION}-slim as base
|
||||
|
||||
ENV PYTHONDONTWRITEBYTECODE=1
|
||||
ENV PYTHONUNBUFFERED=1
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
ARG UID=10001
|
||||
RUN adduser \
|
||||
--disabled-password \
|
||||
--gecos "" \
|
||||
--home "/nonexistent" \
|
||||
--shell "/bin/bash" \
|
||||
--no-create-home \
|
||||
--uid "${UID}" \
|
||||
appuser
|
||||
|
||||
RUN apt-get update && apt-get install -y \
|
||||
build-essential \
|
||||
gcc \
|
||||
&& apt-get clean \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
COPY requirements.txt /app/
|
||||
RUN pip install --no-cache-dir -r requirements.txt
|
||||
|
||||
COPY . /app
|
||||
COPY scripts/start_flower.sh /app/start_flower.sh
|
||||
RUN chmod a+x /app/start_flower.sh
|
||||
|
||||
USER appuser
|
||||
|
||||
CMD ["/app/start_flower.sh"]
|
||||
@@ -39,9 +39,12 @@ def create_app(config_file=None):
|
||||
# Register Necessary Extensions
|
||||
register_extensions(app)
|
||||
|
||||
# register Blueprints
|
||||
# register Namespaces
|
||||
register_namespaces(api_rest)
|
||||
|
||||
# Register Blueprints
|
||||
register_blueprints(app)
|
||||
|
||||
# Error handler for the API
|
||||
@app.errorhandler(EveAIException)
|
||||
def handle_eveai_exception(error):
|
||||
@@ -73,20 +76,24 @@ def create_app(config_file=None):
|
||||
app.logger.debug('Token request detected, skipping JWT verification')
|
||||
return
|
||||
|
||||
try:
|
||||
verify_jwt_in_request(optional=True)
|
||||
tenant_id = get_jwt_identity()
|
||||
app.logger.debug(f'Tenant ID from JWT: {tenant_id}')
|
||||
# Check if this a health check request
|
||||
if request.path.startswith('/_healthz') or request.path.startswith('/healthz'):
|
||||
app.logger.debug('Health check request detected, skipping JWT verification')
|
||||
else:
|
||||
try:
|
||||
verify_jwt_in_request(optional=True)
|
||||
tenant_id = get_jwt_identity()
|
||||
app.logger.debug(f'Tenant ID from JWT: {tenant_id}')
|
||||
|
||||
if tenant_id:
|
||||
Database(tenant_id).switch_schema()
|
||||
app.logger.debug(f'Switched to schema for tenant {tenant_id}')
|
||||
else:
|
||||
app.logger.debug('No tenant ID found in JWT')
|
||||
except Exception as e:
|
||||
app.logger.error(f'Error in before_request: {str(e)}')
|
||||
# Don't raise the exception here, let the request continue
|
||||
# The appropriate error handling will be done in the specific endpoints
|
||||
if tenant_id:
|
||||
Database(tenant_id).switch_schema()
|
||||
app.logger.debug(f'Switched to schema for tenant {tenant_id}')
|
||||
else:
|
||||
app.logger.debug('No tenant ID found in JWT')
|
||||
except Exception as e:
|
||||
app.logger.error(f'Error in before_request: {str(e)}')
|
||||
# Don't raise the exception here, let the request continue
|
||||
# The appropriate error handling will be done in the specific endpoints
|
||||
|
||||
return app
|
||||
|
||||
@@ -102,3 +109,9 @@ def register_extensions(app):
|
||||
def register_namespaces(app):
|
||||
api_rest.add_namespace(document_ns, path='/api/v1/documents')
|
||||
api_rest.add_namespace(auth_ns, path='/api/v1/auth')
|
||||
|
||||
|
||||
def register_blueprints(app):
|
||||
from .views.healthz_views import healthz_bp
|
||||
app.register_blueprint(healthz_bp)
|
||||
|
||||
|
||||
82
eveai_api/views/healthz_views.py
Normal file
82
eveai_api/views/healthz_views.py
Normal file
@@ -0,0 +1,82 @@
|
||||
from flask import Blueprint, current_app, request
|
||||
from flask_healthz import HealthError
|
||||
from sqlalchemy.exc import SQLAlchemyError
|
||||
from celery.exceptions import TimeoutError as CeleryTimeoutError
|
||||
from prometheus_client import Counter, Histogram, generate_latest, CONTENT_TYPE_LATEST
|
||||
from common.extensions import db, metrics, minio_client
|
||||
from common.utils.celery_utils import current_celery
|
||||
|
||||
healthz_bp = Blueprint('healthz', __name__, url_prefix='/_healthz')
|
||||
|
||||
# Define Prometheus metrics
|
||||
api_request_counter = Counter('api_request_count', 'API Request Count', ['method', 'endpoint'])
|
||||
api_request_latency = Histogram('api_request_latency_seconds', 'API Request latency')
|
||||
|
||||
|
||||
def liveness():
|
||||
try:
|
||||
# Basic check to see if the app is running
|
||||
return True
|
||||
except Exception:
|
||||
raise HealthError("Liveness check failed")
|
||||
|
||||
|
||||
def readiness():
|
||||
checks = {
|
||||
"database": check_database(),
|
||||
# "celery": check_celery(),
|
||||
"minio": check_minio(),
|
||||
# Add more checks as needed
|
||||
}
|
||||
|
||||
if not all(checks.values()):
|
||||
raise HealthError("Readiness check failed")
|
||||
|
||||
|
||||
def check_database():
|
||||
try:
|
||||
# Perform a simple database query
|
||||
db.session.execute("SELECT 1")
|
||||
return True
|
||||
except SQLAlchemyError:
|
||||
current_app.logger.error("Database check failed", exc_info=True)
|
||||
return False
|
||||
|
||||
|
||||
def check_celery():
|
||||
try:
|
||||
# Send a simple task to Celery
|
||||
result = current_celery.send_task('tasks.ping', queue='embeddings')
|
||||
response = result.get(timeout=10) # Wait for up to 10 seconds for a response
|
||||
return response == 'pong'
|
||||
except CeleryTimeoutError:
|
||||
current_app.logger.error("Celery check timed out", exc_info=True)
|
||||
return False
|
||||
except Exception as e:
|
||||
current_app.logger.error(f"Celery check failed: {str(e)}", exc_info=True)
|
||||
return False
|
||||
|
||||
|
||||
def check_minio():
|
||||
try:
|
||||
# List buckets to check if MinIO is accessible
|
||||
minio_client.list_buckets()
|
||||
return True
|
||||
except Exception as e:
|
||||
current_app.logger.error(f"MinIO check failed: {str(e)}", exc_info=True)
|
||||
return False
|
||||
|
||||
|
||||
@healthz_bp.route('/metrics')
|
||||
@metrics.do_not_track()
|
||||
def prometheus_metrics():
|
||||
return generate_latest(), 200, {'Content-Type': CONTENT_TYPE_LATEST}
|
||||
|
||||
|
||||
def init_healtz(app):
|
||||
app.config.update(
|
||||
HEALTHZ={
|
||||
"live": "healthz_views.liveness",
|
||||
"ready": "healthz_views.readiness",
|
||||
}
|
||||
)
|
||||
@@ -7,9 +7,11 @@ from werkzeug.middleware.proxy_fix import ProxyFix
|
||||
import logging.config
|
||||
|
||||
from common.extensions import (db, migrate, bootstrap, security, mail, login_manager, cors, csrf, session,
|
||||
minio_client, simple_encryption)
|
||||
minio_client, simple_encryption, metrics)
|
||||
from common.models.user import User, Role, Tenant, TenantDomain
|
||||
import common.models.interaction
|
||||
import common.models.monitoring
|
||||
import common.models.document
|
||||
from common.utils.nginx_utils import prefixed_url_for
|
||||
from config.logging_config import LOGGING
|
||||
from common.utils.security import set_tenant_session_data
|
||||
@@ -114,10 +116,10 @@ def register_extensions(app):
|
||||
csrf.init_app(app)
|
||||
login_manager.init_app(app)
|
||||
cors.init_app(app)
|
||||
# kms_client.init_app(app)
|
||||
simple_encryption.init_app(app)
|
||||
session.init_app(app)
|
||||
minio_client.init_app(app)
|
||||
metrics.init_app(app)
|
||||
|
||||
|
||||
# Register Blueprints
|
||||
@@ -132,3 +134,7 @@ def register_blueprints(app):
|
||||
app.register_blueprint(security_bp)
|
||||
from .views.interaction_views import interaction_bp
|
||||
app.register_blueprint(interaction_bp)
|
||||
from .views.healthz_views import healthz_bp, init_healtz
|
||||
app.register_blueprint(healthz_bp)
|
||||
init_healtz(app)
|
||||
|
||||
|
||||
@@ -1,16 +1,16 @@
|
||||
{% macro render_field(field, disabled_fields=[], exclude_fields=[]) %}
|
||||
{% macro render_field(field, disabled_fields=[], exclude_fields=[], class='') %}
|
||||
{% set disabled = field.name in disabled_fields %}
|
||||
{% set exclude_fields = exclude_fields + ['csrf_token', 'submit'] %}
|
||||
{% if field.name not in exclude_fields %}
|
||||
{% if field.type == 'BooleanField' %}
|
||||
<div class="form-check">
|
||||
{{ field(class="form-check-input", type="checkbox", id="flexSwitchCheckDefault") }}
|
||||
{{ field(class="form-check-input " + class, type="checkbox", id="flexSwitchCheckDefault") }}
|
||||
{{ field.label(class="form-check-label", for="flexSwitchCheckDefault", disabled=disabled) }}
|
||||
</div>
|
||||
{% else %}
|
||||
<div class="form-group">
|
||||
{{ field.label(class="form-label") }}
|
||||
{{ field(class="form-control", disabled=disabled) }}
|
||||
{{ field(class="form-control " + class, disabled=disabled) }}
|
||||
{% if field.errors %}
|
||||
<div class="invalid-feedback">
|
||||
{% for error in field.errors %}
|
||||
|
||||
@@ -13,3 +13,5 @@
|
||||
<script src="{{url_for('static', filename='assets/js/plugins/anime.min.js')}}"></script>
|
||||
<script src="{{url_for('static', filename='assets/js/material-kit-pro.min.js')}}?v=3.0.4 type="text/javascript"></script>
|
||||
<script src="https://cdnjs.cloudflare.com/ajax/libs/bootstrap/5.3.3/js/bootstrap.bundle.min.js"></script>
|
||||
<script src="https://cdnjs.cloudflare.com/ajax/libs/select2/4.0.13/js/select2.min.js"></script>
|
||||
|
||||
|
||||
@@ -1,22 +1,52 @@
|
||||
{% extends 'base.html' %}
|
||||
{% from "macros.html" import render_selectable_table, render_pagination %}
|
||||
|
||||
{% from "macros.html" import render_selectable_table, render_pagination, render_field %}
|
||||
{% block title %}Tenant Selection{% endblock %}
|
||||
|
||||
{% block content_title %}Select a Tenant{% endblock %}
|
||||
{% block content_description %}Select the active tenant for the current session{% endblock %}
|
||||
|
||||
{% block content %}
|
||||
|
||||
<!-- Filter Form -->
|
||||
<form method="POST" action="{{ url_for('user_bp.select_tenant') }}" class="mb-4">
|
||||
{{ filter_form.hidden_tag() }}
|
||||
<div class="row">
|
||||
<div class="col-md-4">
|
||||
{{ render_field(filter_form.types, class="select2") }}
|
||||
</div>
|
||||
<div class="col-md-4">
|
||||
{{ render_field(filter_form.search) }}
|
||||
</div>
|
||||
<div class="col-md-4">
|
||||
{{ filter_form.submit(class="btn btn-primary") }}
|
||||
</div>
|
||||
</div>
|
||||
</form>
|
||||
|
||||
<!-- Tenant Selection Form -->
|
||||
<form method="POST" action="{{ url_for('user_bp.handle_tenant_selection') }}">
|
||||
{{ render_selectable_table(headers=["Tenant ID", "Tenant Name", "Website"], rows=rows, selectable=True, id="tenantsTable") }}
|
||||
{{ render_selectable_table(headers=["Tenant ID", "Tenant Name", "Website", "Type"], rows=rows, selectable=True, id="tenantsTable") }}
|
||||
<div class="form-group mt-3">
|
||||
<button type="submit" name="action" value="select_tenant" class="btn btn-primary">Set Session Tenant</button>
|
||||
<button type="submit" name="action" value="edit_tenant" class="btn btn-secondary">Edit Tenant</button>
|
||||
</div>
|
||||
</form>
|
||||
|
||||
{% endblock %}
|
||||
|
||||
{% block content_footer %}
|
||||
{{ render_pagination(pagination, 'user_bp.select_tenant') }}
|
||||
{{ render_pagination(pagination, 'user_bp.select_tenant') }}
|
||||
{% endblock %}
|
||||
|
||||
{% block scripts %}
|
||||
<script>
|
||||
$(document).ready(function() {
|
||||
$('.select2').select2({
|
||||
placeholder: "Select tenant types",
|
||||
allowClear: true,
|
||||
minimumResultsForSearch: Infinity, // Hides the search box
|
||||
dropdownCssClass: 'select2-dropdown-hidden', // Custom class for dropdown
|
||||
containerCssClass: 'select2-container-hidden' // Custom class for container
|
||||
});
|
||||
});
|
||||
</script>
|
||||
{% endblock %}
|
||||
|
||||
|
||||
@@ -10,7 +10,7 @@
|
||||
<form method="post">
|
||||
{{ form.hidden_tag() }}
|
||||
<!-- Main Tenant Information -->
|
||||
{% set main_fields = ['name', 'website', 'default_language', 'allowed_languages'] %}
|
||||
{% set main_fields = ['name', 'website', 'default_language', 'allowed_languages', 'rag_context', 'type'] %}
|
||||
{% for field in form %}
|
||||
{{ render_included_field(field, disabled_fields=main_fields, include_fields=main_fields) }}
|
||||
{% endfor %}
|
||||
|
||||
@@ -30,7 +30,6 @@ class AddDocumentForm(FlaskForm):
|
||||
user_context = TextAreaField('User Context', validators=[Optional()])
|
||||
valid_from = DateField('Valid from', id='form-control datepicker', validators=[Optional()])
|
||||
user_metadata = TextAreaField('User Metadata', validators=[Optional(), validate_json])
|
||||
system_metadata = TextAreaField('System Metadata', validators=[Optional(), validate_json])
|
||||
|
||||
submit = SubmitField('Submit')
|
||||
|
||||
@@ -38,7 +37,8 @@ class AddDocumentForm(FlaskForm):
|
||||
super().__init__()
|
||||
self.language.choices = [(language, language) for language in
|
||||
session.get('tenant').get('allowed_languages')]
|
||||
self.language.data = session.get('tenant').get('default_language')
|
||||
if not self.language.data:
|
||||
self.language.data = session.get('tenant').get('default_language')
|
||||
|
||||
|
||||
class AddURLForm(FlaskForm):
|
||||
@@ -48,7 +48,6 @@ class AddURLForm(FlaskForm):
|
||||
user_context = TextAreaField('User Context', validators=[Optional()])
|
||||
valid_from = DateField('Valid from', id='form-control datepicker', validators=[Optional()])
|
||||
user_metadata = TextAreaField('User Metadata', validators=[Optional(), validate_json])
|
||||
system_metadata = TextAreaField('System Metadata', validators=[Optional(), validate_json])
|
||||
|
||||
submit = SubmitField('Submit')
|
||||
|
||||
@@ -56,7 +55,8 @@ class AddURLForm(FlaskForm):
|
||||
super().__init__()
|
||||
self.language.choices = [(language, language) for language in
|
||||
session.get('tenant').get('allowed_languages')]
|
||||
self.language.data = session.get('tenant').get('default_language')
|
||||
if not self.language.data:
|
||||
self.language.data = session.get('tenant').get('default_language')
|
||||
|
||||
|
||||
class AddURLsForm(FlaskForm):
|
||||
@@ -72,7 +72,8 @@ class AddURLsForm(FlaskForm):
|
||||
super().__init__()
|
||||
self.language.choices = [(language, language) for language in
|
||||
session.get('tenant').get('allowed_languages')]
|
||||
self.language.data = session.get('tenant').get('default_language')
|
||||
if not self.language.data:
|
||||
self.language.data = session.get('tenant').get('default_language')
|
||||
|
||||
|
||||
class EditDocumentForm(FlaskForm):
|
||||
|
||||
@@ -56,11 +56,9 @@ def before_request():
|
||||
@roles_accepted('Super User', 'Tenant Admin')
|
||||
def add_document():
|
||||
form = AddDocumentForm()
|
||||
current_app.logger.debug('Adding document')
|
||||
|
||||
if form.validate_on_submit():
|
||||
try:
|
||||
current_app.logger.debug('Validating file type')
|
||||
tenant_id = session['tenant']['id']
|
||||
file = form.file.data
|
||||
filename = secure_filename(file.filename)
|
||||
@@ -68,15 +66,15 @@ def add_document():
|
||||
|
||||
validate_file_type(extension)
|
||||
|
||||
current_app.logger.debug(f'Language on form: {form.language.data}')
|
||||
api_input = {
|
||||
'name': form.name.data,
|
||||
'language': form.language.data,
|
||||
'user_context': form.user_context.data,
|
||||
'valid_from': form.valid_from.data,
|
||||
'user_metadata': json.loads(form.user_metadata.data) if form.user_metadata.data else None,
|
||||
'system_metadata': json.loads(form.system_metadata.data) if form.system_metadata.data else None
|
||||
|
||||
}
|
||||
current_app.logger.debug(f'Creating document stack with input {api_input}')
|
||||
|
||||
new_doc, new_doc_vers = create_document_stack(api_input, file, filename, extension, tenant_id)
|
||||
task_id = start_embedding_task(tenant_id, new_doc_vers.id)
|
||||
@@ -113,7 +111,6 @@ def add_url():
|
||||
'user_context': form.user_context.data,
|
||||
'valid_from': form.valid_from.data,
|
||||
'user_metadata': json.loads(form.user_metadata.data) if form.user_metadata.data else None,
|
||||
'system_metadata': json.loads(form.system_metadata.data) if form.system_metadata.data else None
|
||||
}
|
||||
|
||||
new_doc, new_doc_vers = create_document_stack(api_input, file_content, filename, extension, tenant_id)
|
||||
|
||||
100
eveai_app/views/healthz_views.py
Normal file
100
eveai_app/views/healthz_views.py
Normal file
@@ -0,0 +1,100 @@
|
||||
from flask import Blueprint, current_app, request
|
||||
from flask_healthz import HealthError
|
||||
from sqlalchemy.exc import SQLAlchemyError
|
||||
from celery.exceptions import TimeoutError as CeleryTimeoutError
|
||||
from prometheus_client import Counter, Histogram, generate_latest, CONTENT_TYPE_LATEST
|
||||
import time
|
||||
|
||||
from common.extensions import db, metrics, minio_client
|
||||
from common.utils.celery_utils import current_celery
|
||||
|
||||
healthz_bp = Blueprint('healthz', __name__, url_prefix='/_healthz')
|
||||
|
||||
# Define Prometheus metrics
|
||||
api_request_counter = Counter('api_request_count', 'API Request Count', ['method', 'endpoint'])
|
||||
api_request_latency = Histogram('api_request_latency_seconds', 'API Request latency')
|
||||
|
||||
|
||||
def liveness():
|
||||
try:
|
||||
# Basic check to see if the app is running
|
||||
return True
|
||||
except Exception:
|
||||
raise HealthError("Liveness check failed")
|
||||
|
||||
|
||||
def readiness():
|
||||
checks = {
|
||||
"database": check_database(),
|
||||
"celery": check_celery(),
|
||||
"minio": check_minio(),
|
||||
# Add more checks as needed
|
||||
}
|
||||
|
||||
if not all(checks.values()):
|
||||
raise HealthError("Readiness check failed")
|
||||
|
||||
|
||||
def check_database():
|
||||
try:
|
||||
# Perform a simple database query
|
||||
db.session.execute("SELECT 1")
|
||||
return True
|
||||
except SQLAlchemyError:
|
||||
current_app.logger.error("Database check failed", exc_info=True)
|
||||
return False
|
||||
|
||||
|
||||
def check_celery():
|
||||
try:
|
||||
# Send a simple task to Celery
|
||||
result = current_celery.send_task('ping', queue='embeddings')
|
||||
response = result.get(timeout=10) # Wait for up to 10 seconds for a response
|
||||
return response == 'pong'
|
||||
except CeleryTimeoutError:
|
||||
current_app.logger.error("Celery check timed out", exc_info=True)
|
||||
return False
|
||||
except Exception as e:
|
||||
current_app.logger.error(f"Celery check failed: {str(e)}", exc_info=True)
|
||||
return False
|
||||
|
||||
|
||||
def check_minio():
|
||||
try:
|
||||
# List buckets to check if MinIO is accessible
|
||||
minio_client.list_buckets()
|
||||
return True
|
||||
except Exception as e:
|
||||
current_app.logger.error(f"MinIO check failed: {str(e)}", exc_info=True)
|
||||
return False
|
||||
|
||||
|
||||
@healthz_bp.route('/metrics')
|
||||
@metrics.do_not_track()
|
||||
def prometheus_metrics():
|
||||
return generate_latest(), 200, {'Content-Type': CONTENT_TYPE_LATEST}
|
||||
|
||||
|
||||
# Custom metrics example
|
||||
@healthz_bp.before_app_request
|
||||
def before_request():
|
||||
request.start_time = time.time()
|
||||
api_request_counter.labels(
|
||||
method=request.method, endpoint=request.endpoint
|
||||
).inc()
|
||||
|
||||
|
||||
@healthz_bp.after_app_request
|
||||
def after_request(response):
|
||||
request_duration = time.time() - request.start_time
|
||||
api_request_latency.observe(request_duration)
|
||||
return response
|
||||
|
||||
|
||||
def init_healtz(app):
|
||||
app.config.update(
|
||||
HEALTHZ={
|
||||
"live": "healthz_views.liveness",
|
||||
"ready": "healthz_views.readiness",
|
||||
}
|
||||
)
|
||||
@@ -2,7 +2,7 @@ from flask import current_app
|
||||
from flask_wtf import FlaskForm
|
||||
from wtforms import (StringField, PasswordField, BooleanField, SubmitField, EmailField, IntegerField, DateField,
|
||||
SelectField, SelectMultipleField, FieldList, FormField, FloatField, TextAreaField)
|
||||
from wtforms.validators import DataRequired, Length, Email, NumberRange, Optional
|
||||
from wtforms.validators import DataRequired, Length, Email, NumberRange, Optional, ValidationError
|
||||
import pytz
|
||||
|
||||
from common.models.user import Role
|
||||
@@ -18,6 +18,8 @@ class TenantForm(FlaskForm):
|
||||
timezone = SelectField('Timezone', choices=[], validators=[DataRequired()])
|
||||
# RAG context
|
||||
rag_context = TextAreaField('RAG Context', validators=[Optional()])
|
||||
# Tenant Type
|
||||
type = SelectField('Tenant Type', validators=[Optional()], default='Active')
|
||||
# LLM fields
|
||||
embedding_model = SelectField('Embedding Model', choices=[], validators=[DataRequired()])
|
||||
llm_model = SelectField('Large Language Model', choices=[], validators=[DataRequired()])
|
||||
@@ -65,6 +67,7 @@ class TenantForm(FlaskForm):
|
||||
# Initialize fallback algorithms
|
||||
self.fallback_algorithms.choices = \
|
||||
[(algorithm, algorithm.lower()) for algorithm in current_app.config['FALLBACK_ALGORITHMS']]
|
||||
self.type.choices = [(t, t) for t in current_app.config['TENANT_TYPES']]
|
||||
|
||||
|
||||
class BaseUserForm(FlaskForm):
|
||||
@@ -107,4 +110,14 @@ class TenantDomainForm(FlaskForm):
|
||||
submit = SubmitField('Add Domain')
|
||||
|
||||
|
||||
class TenantSelectionForm(FlaskForm):
|
||||
types = SelectMultipleField('Tenant Types', choices=[], validators=[Optional()])
|
||||
search = StringField('Search', validators=[Optional()])
|
||||
submit = SubmitField('Filter')
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(TenantSelectionForm, self).__init__(*args, **kwargs)
|
||||
self.types.choices = [(t, t) for t in current_app.config['TENANT_TYPES']]
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -10,7 +10,7 @@ import ast
|
||||
from common.models.user import User, Tenant, Role, TenantDomain
|
||||
from common.extensions import db, security, minio_client, simple_encryption
|
||||
from common.utils.security_utils import send_confirmation_email, send_reset_email
|
||||
from .user_forms import TenantForm, CreateUserForm, EditUserForm, TenantDomainForm
|
||||
from .user_forms import TenantForm, CreateUserForm, EditUserForm, TenantDomainForm, TenantSelectionForm
|
||||
from common.utils.database import Database
|
||||
from common.utils.view_assistants import prepare_table_for_macro, form_validation_failed
|
||||
from common.utils.simple_encryption import generate_api_key
|
||||
@@ -129,6 +129,7 @@ def edit_tenant(tenant_id):
|
||||
form.html_excluded_classes.data = ', '.join(tenant.html_excluded_classes)
|
||||
|
||||
if form.validate_on_submit():
|
||||
current_app.logger.debug(f'Updating tenant {tenant_id}')
|
||||
# Populate the tenant with form data
|
||||
form.populate_obj(tenant)
|
||||
# Then handle the special fields manually
|
||||
@@ -148,6 +149,7 @@ def edit_tenant(tenant_id):
|
||||
session['tenant'] = tenant.to_dict()
|
||||
# return redirect(url_for(f"user/tenant/tenant_id"))
|
||||
else:
|
||||
current_app.logger.debug(f'Tenant update failed with errors: {form.errors}')
|
||||
form_validation_failed(request, form)
|
||||
|
||||
return render_template('user/edit_tenant.html', form=form, tenant_id=tenant_id)
|
||||
@@ -245,20 +247,29 @@ def edit_user(user_id):
|
||||
return render_template('user/edit_user.html', form=form, user_id=user_id)
|
||||
|
||||
|
||||
@user_bp.route('/select_tenant')
|
||||
@user_bp.route('/select_tenant', methods=['GET', 'POST'])
|
||||
@roles_required('Super User')
|
||||
def select_tenant():
|
||||
filter_form = TenantSelectionForm(request.form)
|
||||
page = request.args.get('page', 1, type=int)
|
||||
per_page = request.args.get('per_page', 10, type=int)
|
||||
|
||||
query = Tenant.query.order_by(Tenant.name) # Fetch all tenants from the database
|
||||
query = Tenant.query
|
||||
|
||||
pagination = query.paginate(page=page, per_page=per_page)
|
||||
if filter_form.validate_on_submit():
|
||||
if filter_form.types.data:
|
||||
query = query.filter(Tenant.type.in_(filter_form.types.data))
|
||||
if filter_form.search.data:
|
||||
search = f"%{filter_form.search.data}%"
|
||||
query = query.filter(Tenant.name.ilike(search))
|
||||
|
||||
query = query.order_by(Tenant.name)
|
||||
pagination = query.paginate(page=page, per_page=per_page, error_out=False)
|
||||
tenants = pagination.items
|
||||
|
||||
rows = prepare_table_for_macro(tenants, [('id', ''), ('name', ''), ('website', '')])
|
||||
rows = prepare_table_for_macro(tenants, [('id', ''), ('name', ''), ('website', ''), ('type', '')])
|
||||
|
||||
return render_template('user/select_tenant.html', rows=rows, pagination=pagination)
|
||||
return render_template('user/select_tenant.html', rows=rows, pagination=pagination, filter_form=filter_form)
|
||||
|
||||
|
||||
@user_bp.route('/handle_tenant_selection', methods=['POST'])
|
||||
|
||||
@@ -3,7 +3,7 @@ import logging.config
|
||||
from flask import Flask, jsonify
|
||||
import os
|
||||
|
||||
from common.extensions import db, socketio, jwt, cors, session, simple_encryption
|
||||
from common.extensions import db, socketio, jwt, cors, session, simple_encryption, metrics
|
||||
from config.logging_config import LOGGING
|
||||
from eveai_chat.socket_handlers import chat_handler
|
||||
from common.utils.cors_utils import create_cors_after_request
|
||||
@@ -32,17 +32,6 @@ def create_app(config_file=None):
|
||||
app.celery = make_celery(app.name, app.config)
|
||||
init_celery(app.celery, app)
|
||||
|
||||
# Register Blueprints
|
||||
# register_blueprints(app)
|
||||
|
||||
@app.route('/ping')
|
||||
def ping():
|
||||
return 'pong'
|
||||
|
||||
@app.route('/health', methods=['GET'])
|
||||
def health():
|
||||
return jsonify({'status': 'ok'}), 200
|
||||
|
||||
app.logger.info("EveAI Chat Server Started Successfully")
|
||||
app.logger.info("-------------------------------------------------------------------------------------------------")
|
||||
return app
|
||||
@@ -61,8 +50,8 @@ def register_extensions(app):
|
||||
ping_interval=app.config.get('SOCKETIO_PING_INTERVAL'),
|
||||
)
|
||||
jwt.init_app(app)
|
||||
# kms_client.init_app(app)
|
||||
simple_encryption.init_app(app)
|
||||
metrics.init_app(app)
|
||||
|
||||
# Cors setup
|
||||
cors.init_app(app, resources={r"/chat/*": {"origins": "*"}})
|
||||
@@ -72,5 +61,5 @@ def register_extensions(app):
|
||||
|
||||
|
||||
def register_blueprints(app):
|
||||
from .views.chat_views import chat_bp
|
||||
app.register_blueprint(chat_bp)
|
||||
from views.healthz_views import healthz_bp
|
||||
app.register_blueprint(healthz_bp)
|
||||
|
||||
@@ -1,10 +1,13 @@
|
||||
import uuid
|
||||
from functools import wraps
|
||||
|
||||
from flask_jwt_extended import create_access_token, get_jwt_identity, verify_jwt_in_request, decode_token
|
||||
from flask_socketio import emit, disconnect, join_room, leave_room
|
||||
from flask import current_app, request, session
|
||||
from sqlalchemy.exc import SQLAlchemyError
|
||||
from datetime import datetime, timedelta
|
||||
from prometheus_client import Counter, Histogram
|
||||
from time import time
|
||||
|
||||
from common.extensions import socketio, db, simple_encryption
|
||||
from common.models.user import Tenant
|
||||
@@ -12,8 +15,27 @@ from common.models.interaction import Interaction
|
||||
from common.utils.celery_utils import current_celery
|
||||
from common.utils.database import Database
|
||||
|
||||
# Define custom metrics
|
||||
socketio_message_counter = Counter('socketio_message_count', 'Count of SocketIO messages', ['event_type'])
|
||||
socketio_message_latency = Histogram('socketio_message_latency_seconds', 'Latency of SocketIO message processing', ['event_type'])
|
||||
|
||||
|
||||
# Decorator to measure SocketIO events
|
||||
def track_socketio_event(func):
|
||||
@wraps(func)
|
||||
def wrapper(*args, **kwargs):
|
||||
event_type = func.__name__
|
||||
socketio_message_counter.labels(event_type=event_type).inc()
|
||||
start_time = time()
|
||||
result = func(*args, **kwargs)
|
||||
latency = time() - start_time
|
||||
socketio_message_latency.labels(event_type=event_type).observe(latency)
|
||||
return result
|
||||
return wrapper
|
||||
|
||||
|
||||
@socketio.on('connect')
|
||||
@track_socketio_event
|
||||
def handle_connect():
|
||||
try:
|
||||
current_app.logger.debug(f'SocketIO: Connection handling started using {request.args}')
|
||||
@@ -58,6 +80,7 @@ def handle_connect():
|
||||
|
||||
|
||||
@socketio.on('disconnect')
|
||||
@track_socketio_event
|
||||
def handle_disconnect():
|
||||
room = session.get('room')
|
||||
if room:
|
||||
|
||||
@@ -1,77 +0,0 @@
|
||||
from datetime import datetime as dt, timezone as tz
|
||||
from flask import request, redirect, url_for, render_template, Blueprint, session, current_app, jsonify
|
||||
from flask_security import hash_password, roles_required, roles_accepted
|
||||
from sqlalchemy.exc import SQLAlchemyError
|
||||
from flask_jwt_extended import create_access_token, jwt_required, get_jwt_identity
|
||||
from flask_socketio import emit, join_room, leave_room
|
||||
import ast
|
||||
|
||||
|
||||
from common.models.user import User, Tenant
|
||||
from common.models.interaction import ChatSession, Interaction, InteractionEmbedding
|
||||
from common.models.document import Embedding
|
||||
from common.extensions import db, socketio, kms_client
|
||||
from common.utils.database import Database
|
||||
|
||||
chat_bp = Blueprint('chat_bp', __name__, url_prefix='/chat')
|
||||
|
||||
|
||||
@chat_bp.route('/register_client', methods=['POST'])
|
||||
def register_client():
|
||||
tenant_id = request.json.get('tenant_id')
|
||||
api_key = request.json.get('api_key')
|
||||
|
||||
# Validate tenant_id and api_key here (e.g., check against the database)
|
||||
if validate_tenant(tenant_id, api_key):
|
||||
access_token = create_access_token(identity={'tenant_id': tenant_id, 'api_key': api_key})
|
||||
current_app.logger.debug(f'Tenant Registration: Tenant {tenant_id} registered successfully')
|
||||
return jsonify({'token': access_token}), 200
|
||||
else:
|
||||
current_app.logger.debug(f'Tenant Registration: Invalid tenant_id ({tenant_id}) or api_key ({api_key})')
|
||||
return jsonify({'message': 'Invalid credentials'}), 401
|
||||
|
||||
|
||||
@socketio.on('connect', namespace='/chat')
|
||||
@jwt_required()
|
||||
def handle_connect():
|
||||
current_tenant = get_jwt_identity()
|
||||
current_app.logger.debug(f'Tenant {current_tenant["tenant_id"]} connected')
|
||||
|
||||
|
||||
@socketio.on('message', namespace='/chat')
|
||||
@jwt_required()
|
||||
def handle_message(data):
|
||||
current_tenant = get_jwt_identity()
|
||||
current_app.logger.debug(f'Tenant {current_tenant["tenant_id"]} sent a message: {data}')
|
||||
# Store interaction in the database
|
||||
emit('response', {'data': 'Message received'}, broadcast=True)
|
||||
|
||||
|
||||
def validate_tenant(tenant_id, api_key):
|
||||
tenant = Tenant.query.get_or_404(tenant_id)
|
||||
encrypted_api_key = ast.literal_eval(tenant.encrypted_chat_api_key)
|
||||
|
||||
decrypted_api_key = kms_client.decrypt_api_key(encrypted_api_key)
|
||||
|
||||
return decrypted_api_key == api_key
|
||||
|
||||
|
||||
|
||||
# @chat_bp.route('/', methods=['GET', 'POST'])
|
||||
# def chat():
|
||||
# return render_template('chat.html')
|
||||
#
|
||||
#
|
||||
# @chat.record_once
|
||||
# def on_register(state):
|
||||
# # TODO: write initialisation code when the blueprint is registered (only once)
|
||||
# # socketio.init_app(state.app)
|
||||
# pass
|
||||
#
|
||||
#
|
||||
# @socketio.on('message', namespace='/chat')
|
||||
# def handle_message(message):
|
||||
# # TODO: write message handling code to actually realise chat
|
||||
# # print('Received message:', message)
|
||||
# # socketio.emit('response', {'data': message}, namespace='/chat')
|
||||
# pass
|
||||
70
eveai_chat/views/healthz_views.py
Normal file
70
eveai_chat/views/healthz_views.py
Normal file
@@ -0,0 +1,70 @@
|
||||
from flask import Blueprint, current_app, request
|
||||
from flask_healthz import HealthError
|
||||
from sqlalchemy.exc import SQLAlchemyError
|
||||
from celery.exceptions import TimeoutError as CeleryTimeoutError
|
||||
from common.extensions import db, metrics, minio_client
|
||||
from common.utils.celery_utils import current_celery
|
||||
from eveai_chat.socket_handlers.chat_handler import socketio_message_counter, socketio_message_latency
|
||||
|
||||
healthz_bp = Blueprint('healthz', __name__, url_prefix='/_healthz')
|
||||
|
||||
|
||||
def liveness():
|
||||
try:
|
||||
# Basic check to see if the app is running
|
||||
return True
|
||||
except Exception:
|
||||
raise HealthError("Liveness check failed")
|
||||
|
||||
|
||||
def readiness():
|
||||
checks = {
|
||||
"database": check_database(),
|
||||
"celery": check_celery(),
|
||||
# Add more checks as needed
|
||||
}
|
||||
|
||||
if not all(checks.values()):
|
||||
raise HealthError("Readiness check failed")
|
||||
|
||||
|
||||
def check_database():
|
||||
try:
|
||||
# Perform a simple database query
|
||||
db.session.execute("SELECT 1")
|
||||
return True
|
||||
except SQLAlchemyError:
|
||||
current_app.logger.error("Database check failed", exc_info=True)
|
||||
return False
|
||||
|
||||
|
||||
def check_celery():
|
||||
try:
|
||||
# Send a simple task to Celery
|
||||
result = current_celery.send_task('ping', queue='llm_interactions')
|
||||
response = result.get(timeout=10) # Wait for up to 10 seconds for a response
|
||||
return response == 'pong'
|
||||
except CeleryTimeoutError:
|
||||
current_app.logger.error("Celery check timed out", exc_info=True)
|
||||
return False
|
||||
except Exception as e:
|
||||
current_app.logger.error(f"Celery check failed: {str(e)}", exc_info=True)
|
||||
return False
|
||||
|
||||
|
||||
@healthz_bp.route('/metrics')
|
||||
@metrics.do_not_track()
|
||||
def prometheus_metrics():
|
||||
return metrics.generate_latest()
|
||||
|
||||
|
||||
def init_healtz(app):
|
||||
app.config.update(
|
||||
HEALTHZ={
|
||||
"live": "healthz_views.liveness",
|
||||
"ready": "healthz_views.readiness",
|
||||
}
|
||||
)
|
||||
# Register SocketIO metrics with Prometheus
|
||||
metrics.register(socketio_message_counter)
|
||||
metrics.register(socketio_message_latency)
|
||||
@@ -22,12 +22,23 @@ from common.models.interaction import ChatSession, Interaction, InteractionEmbed
|
||||
from common.extensions import db
|
||||
from common.utils.celery_utils import current_celery
|
||||
from common.utils.model_utils import select_model_variables, create_language_template, replace_variable_in_template
|
||||
from common.langchain.EveAIRetriever import EveAIRetriever
|
||||
from common.langchain.EveAIHistoryRetriever import EveAIHistoryRetriever
|
||||
from common.langchain.eveai_retriever import EveAIRetriever
|
||||
from common.langchain.eveai_history_retriever import EveAIHistoryRetriever
|
||||
from common.utils.business_event import BusinessEvent
|
||||
from common.utils.business_event_context import current_event
|
||||
|
||||
|
||||
# Healthcheck task
|
||||
@current_celery.task(name='ping', queue='llm_interactions')
|
||||
def ping():
|
||||
return 'pong'
|
||||
|
||||
|
||||
def detail_question(question, language, model_variables, session_id):
|
||||
retriever = EveAIHistoryRetriever(model_variables, session_id)
|
||||
current_app.logger.debug(f'Detail question: {question}')
|
||||
current_app.logger.debug(f'model_varialbes: {model_variables}')
|
||||
current_app.logger.debug(f'session_id: {session_id}')
|
||||
retriever = EveAIHistoryRetriever(model_variables=model_variables, session_id=session_id)
|
||||
llm = model_variables['llm']
|
||||
template = model_variables['history_template']
|
||||
language_template = create_language_template(template, language)
|
||||
@@ -56,53 +67,56 @@ def ask_question(tenant_id, question, language, session_id, user_timezone, room)
|
||||
'interaction_id': 'interaction_id_value'
|
||||
}
|
||||
"""
|
||||
current_app.logger.info(f'ask_question: Received question for tenant {tenant_id}: {question}. Processing...')
|
||||
with BusinessEvent("Ask Question", tenant_id=tenant_id, chat_session_id=session_id):
|
||||
current_app.logger.info(f'ask_question: Received question for tenant {tenant_id}: {question}. Processing...')
|
||||
|
||||
try:
|
||||
# Retrieve the tenant
|
||||
tenant = Tenant.query.get(tenant_id)
|
||||
if not tenant:
|
||||
raise Exception(f'Tenant {tenant_id} not found.')
|
||||
try:
|
||||
# Retrieve the tenant
|
||||
tenant = Tenant.query.get(tenant_id)
|
||||
if not tenant:
|
||||
raise Exception(f'Tenant {tenant_id} not found.')
|
||||
|
||||
# Ensure we are working in the correct database schema
|
||||
Database(tenant_id).switch_schema()
|
||||
# Ensure we are working in the correct database schema
|
||||
Database(tenant_id).switch_schema()
|
||||
|
||||
# Ensure we have a session to story history
|
||||
chat_session = ChatSession.query.filter_by(session_id=session_id).first()
|
||||
if not chat_session:
|
||||
try:
|
||||
chat_session = ChatSession()
|
||||
chat_session.session_id = session_id
|
||||
chat_session.session_start = dt.now(tz.utc)
|
||||
chat_session.timezone = user_timezone
|
||||
db.session.add(chat_session)
|
||||
db.session.commit()
|
||||
except SQLAlchemyError as e:
|
||||
current_app.logger.error(f'ask_question: Error initializing chat session in database: {e}')
|
||||
raise
|
||||
# Ensure we have a session to story history
|
||||
chat_session = ChatSession.query.filter_by(session_id=session_id).first()
|
||||
if not chat_session:
|
||||
try:
|
||||
chat_session = ChatSession()
|
||||
chat_session.session_id = session_id
|
||||
chat_session.session_start = dt.now(tz.utc)
|
||||
chat_session.timezone = user_timezone
|
||||
db.session.add(chat_session)
|
||||
db.session.commit()
|
||||
except SQLAlchemyError as e:
|
||||
current_app.logger.error(f'ask_question: Error initializing chat session in database: {e}')
|
||||
raise
|
||||
|
||||
if tenant.rag_tuning:
|
||||
current_app.rag_tuning_logger.debug(f'Received question for tenant {tenant_id}:\n{question}. Processing...')
|
||||
current_app.rag_tuning_logger.debug(f'Tenant Information: \n{tenant.to_dict()}')
|
||||
current_app.rag_tuning_logger.debug(f'===================================================================')
|
||||
current_app.rag_tuning_logger.debug(f'===================================================================')
|
||||
if tenant.rag_tuning:
|
||||
current_app.rag_tuning_logger.debug(f'Received question for tenant {tenant_id}:\n{question}. Processing...')
|
||||
current_app.rag_tuning_logger.debug(f'Tenant Information: \n{tenant.to_dict()}')
|
||||
current_app.rag_tuning_logger.debug(f'===================================================================')
|
||||
current_app.rag_tuning_logger.debug(f'===================================================================')
|
||||
|
||||
result, interaction = answer_using_tenant_rag(question, language, tenant, chat_session)
|
||||
result['algorithm'] = current_app.config['INTERACTION_ALGORITHMS']['RAG_TENANT']['name']
|
||||
result['interaction_id'] = interaction.id
|
||||
result['room'] = room # Include the room in the result
|
||||
|
||||
if result['insufficient_info']:
|
||||
if 'LLM' in tenant.fallback_algorithms:
|
||||
result, interaction = answer_using_llm(question, language, tenant, chat_session)
|
||||
result['algorithm'] = current_app.config['INTERACTION_ALGORITHMS']['LLM']['name']
|
||||
with current_event.create_span("RAG Answer"):
|
||||
result, interaction = answer_using_tenant_rag(question, language, tenant, chat_session)
|
||||
result['algorithm'] = current_app.config['INTERACTION_ALGORITHMS']['RAG_TENANT']['name']
|
||||
result['interaction_id'] = interaction.id
|
||||
result['room'] = room # Include the room in the result
|
||||
|
||||
return result
|
||||
except Exception as e:
|
||||
current_app.logger.error(f'ask_question: Error processing question: {e}')
|
||||
raise
|
||||
if result['insufficient_info']:
|
||||
if 'LLM' in tenant.fallback_algorithms:
|
||||
with current_event.create_span("Fallback Algorithm LLM"):
|
||||
result, interaction = answer_using_llm(question, language, tenant, chat_session)
|
||||
result['algorithm'] = current_app.config['INTERACTION_ALGORITHMS']['LLM']['name']
|
||||
result['interaction_id'] = interaction.id
|
||||
result['room'] = room # Include the room in the result
|
||||
|
||||
return result
|
||||
except Exception as e:
|
||||
current_app.logger.error(f'ask_question: Error processing question: {e}')
|
||||
raise
|
||||
|
||||
|
||||
def answer_using_tenant_rag(question, language, tenant, chat_session):
|
||||
@@ -122,92 +136,94 @@ def answer_using_tenant_rag(question, language, tenant, chat_session):
|
||||
# Langchain debugging if required
|
||||
# set_debug(True)
|
||||
|
||||
detailed_question = detail_question(question, language, model_variables, chat_session.session_id)
|
||||
current_app.logger.debug(f'Original question:\n {question}\n\nDetailed question: {detailed_question}')
|
||||
if tenant.rag_tuning:
|
||||
current_app.rag_tuning_logger.debug(f'Detailed Question for tenant {tenant.id}:\n{question}.')
|
||||
current_app.rag_tuning_logger.debug(f'-------------------------------------------------------------------')
|
||||
new_interaction.detailed_question = detailed_question
|
||||
new_interaction.detailed_question_at = dt.now(tz.utc)
|
||||
|
||||
retriever = EveAIRetriever(model_variables, tenant_info)
|
||||
llm = model_variables['llm']
|
||||
template = model_variables['rag_template']
|
||||
language_template = create_language_template(template, language)
|
||||
full_template = replace_variable_in_template(language_template, "{tenant_context}", model_variables['rag_context'])
|
||||
rag_prompt = ChatPromptTemplate.from_template(full_template)
|
||||
setup_and_retrieval = RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
|
||||
if tenant.rag_tuning:
|
||||
current_app.rag_tuning_logger.debug(f'Full prompt for tenant {tenant.id}:\n{full_template}.')
|
||||
current_app.rag_tuning_logger.debug(f'-------------------------------------------------------------------')
|
||||
|
||||
new_interaction_embeddings = []
|
||||
if not model_variables['cited_answer_cls']: # The model doesn't support structured feedback
|
||||
output_parser = StrOutputParser()
|
||||
|
||||
chain = setup_and_retrieval | rag_prompt | llm | output_parser
|
||||
|
||||
# Invoke the chain with the actual question
|
||||
answer = chain.invoke(detailed_question)
|
||||
new_interaction.answer = answer
|
||||
result = {
|
||||
'answer': answer,
|
||||
'citations': [],
|
||||
'insufficient_info': False
|
||||
}
|
||||
|
||||
else: # The model supports structured feedback
|
||||
structured_llm = llm.with_structured_output(model_variables['cited_answer_cls'])
|
||||
|
||||
chain = setup_and_retrieval | rag_prompt | structured_llm
|
||||
|
||||
result = chain.invoke(detailed_question).dict()
|
||||
current_app.logger.debug(f'ask_question: result answer: {result['answer']}')
|
||||
current_app.logger.debug(f'ask_question: result citations: {result["citations"]}')
|
||||
current_app.logger.debug(f'ask_question: insufficient information: {result["insufficient_info"]}')
|
||||
with current_event.create_span("Detail Question"):
|
||||
detailed_question = detail_question(question, language, model_variables, chat_session.session_id)
|
||||
current_app.logger.debug(f'Original question:\n {question}\n\nDetailed question: {detailed_question}')
|
||||
if tenant.rag_tuning:
|
||||
current_app.rag_tuning_logger.debug(f'ask_question: result answer: {result['answer']}')
|
||||
current_app.rag_tuning_logger.debug(f'ask_question: result citations: {result["citations"]}')
|
||||
current_app.rag_tuning_logger.debug(f'ask_question: insufficient information: {result["insufficient_info"]}')
|
||||
current_app.rag_tuning_logger.debug(f'Detailed Question for tenant {tenant.id}:\n{question}.')
|
||||
current_app.rag_tuning_logger.debug(f'-------------------------------------------------------------------')
|
||||
new_interaction.answer = result['answer']
|
||||
new_interaction.detailed_question = detailed_question
|
||||
new_interaction.detailed_question_at = dt.now(tz.utc)
|
||||
|
||||
# Filter out the existing Embedding IDs
|
||||
given_embedding_ids = [int(emb_id) for emb_id in result['citations']]
|
||||
embeddings = (
|
||||
db.session.query(Embedding)
|
||||
.filter(Embedding.id.in_(given_embedding_ids))
|
||||
.all()
|
||||
)
|
||||
existing_embedding_ids = [emb.id for emb in embeddings]
|
||||
urls = list(set(emb.document_version.url for emb in embeddings))
|
||||
with current_event.create_span("Generate Answer using RAG"):
|
||||
retriever = EveAIRetriever(model_variables, tenant_info)
|
||||
llm = model_variables['llm']
|
||||
template = model_variables['rag_template']
|
||||
language_template = create_language_template(template, language)
|
||||
full_template = replace_variable_in_template(language_template, "{tenant_context}", model_variables['rag_context'])
|
||||
rag_prompt = ChatPromptTemplate.from_template(full_template)
|
||||
setup_and_retrieval = RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
|
||||
if tenant.rag_tuning:
|
||||
current_app.rag_tuning_logger.debug(f'Referenced documents for answer for tenant {tenant.id}:\n')
|
||||
current_app.rag_tuning_logger.debug(f'{urls}')
|
||||
current_app.rag_tuning_logger.debug(f'Full prompt for tenant {tenant.id}:\n{full_template}.')
|
||||
current_app.rag_tuning_logger.debug(f'-------------------------------------------------------------------')
|
||||
|
||||
for emb_id in existing_embedding_ids:
|
||||
new_interaction_embedding = InteractionEmbedding(embedding_id=emb_id)
|
||||
new_interaction_embedding.interaction = new_interaction
|
||||
new_interaction_embeddings.append(new_interaction_embedding)
|
||||
new_interaction_embeddings = []
|
||||
if not model_variables['cited_answer_cls']: # The model doesn't support structured feedback
|
||||
output_parser = StrOutputParser()
|
||||
|
||||
result['citations'] = urls
|
||||
chain = setup_and_retrieval | rag_prompt | llm | output_parser
|
||||
|
||||
# Disable langchain debugging if set above.
|
||||
# set_debug(False)
|
||||
# Invoke the chain with the actual question
|
||||
answer = chain.invoke(detailed_question)
|
||||
new_interaction.answer = answer
|
||||
result = {
|
||||
'answer': answer,
|
||||
'citations': [],
|
||||
'insufficient_info': False
|
||||
}
|
||||
|
||||
new_interaction.answer_at = dt.now(tz.utc)
|
||||
chat_session.session_end = dt.now(tz.utc)
|
||||
else: # The model supports structured feedback
|
||||
structured_llm = llm.with_structured_output(model_variables['cited_answer_cls'])
|
||||
|
||||
try:
|
||||
db.session.add(chat_session)
|
||||
db.session.add(new_interaction)
|
||||
db.session.add_all(new_interaction_embeddings)
|
||||
db.session.commit()
|
||||
return result, new_interaction
|
||||
except SQLAlchemyError as e:
|
||||
current_app.logger.error(f'ask_question: Error saving interaction to database: {e}')
|
||||
raise
|
||||
chain = setup_and_retrieval | rag_prompt | structured_llm
|
||||
|
||||
result = chain.invoke(detailed_question).dict()
|
||||
current_app.logger.debug(f'ask_question: result answer: {result['answer']}')
|
||||
current_app.logger.debug(f'ask_question: result citations: {result["citations"]}')
|
||||
current_app.logger.debug(f'ask_question: insufficient information: {result["insufficient_info"]}')
|
||||
if tenant.rag_tuning:
|
||||
current_app.rag_tuning_logger.debug(f'ask_question: result answer: {result['answer']}')
|
||||
current_app.rag_tuning_logger.debug(f'ask_question: result citations: {result["citations"]}')
|
||||
current_app.rag_tuning_logger.debug(f'ask_question: insufficient information: {result["insufficient_info"]}')
|
||||
current_app.rag_tuning_logger.debug(f'-------------------------------------------------------------------')
|
||||
new_interaction.answer = result['answer']
|
||||
|
||||
# Filter out the existing Embedding IDs
|
||||
given_embedding_ids = [int(emb_id) for emb_id in result['citations']]
|
||||
embeddings = (
|
||||
db.session.query(Embedding)
|
||||
.filter(Embedding.id.in_(given_embedding_ids))
|
||||
.all()
|
||||
)
|
||||
existing_embedding_ids = [emb.id for emb in embeddings]
|
||||
urls = list(set(emb.document_version.url for emb in embeddings))
|
||||
if tenant.rag_tuning:
|
||||
current_app.rag_tuning_logger.debug(f'Referenced documents for answer for tenant {tenant.id}:\n')
|
||||
current_app.rag_tuning_logger.debug(f'{urls}')
|
||||
current_app.rag_tuning_logger.debug(f'-------------------------------------------------------------------')
|
||||
|
||||
for emb_id in existing_embedding_ids:
|
||||
new_interaction_embedding = InteractionEmbedding(embedding_id=emb_id)
|
||||
new_interaction_embedding.interaction = new_interaction
|
||||
new_interaction_embeddings.append(new_interaction_embedding)
|
||||
|
||||
result['citations'] = urls
|
||||
|
||||
# Disable langchain debugging if set above.
|
||||
# set_debug(False)
|
||||
|
||||
new_interaction.answer_at = dt.now(tz.utc)
|
||||
chat_session.session_end = dt.now(tz.utc)
|
||||
|
||||
try:
|
||||
db.session.add(chat_session)
|
||||
db.session.add(new_interaction)
|
||||
db.session.add_all(new_interaction_embeddings)
|
||||
db.session.commit()
|
||||
return result, new_interaction
|
||||
except SQLAlchemyError as e:
|
||||
current_app.logger.error(f'ask_question: Error saving interaction to database: {e}')
|
||||
raise
|
||||
|
||||
|
||||
def answer_using_llm(question, language, tenant, chat_session):
|
||||
@@ -227,47 +243,49 @@ def answer_using_llm(question, language, tenant, chat_session):
|
||||
# Langchain debugging if required
|
||||
# set_debug(True)
|
||||
|
||||
detailed_question = detail_question(question, language, model_variables, chat_session.session_id)
|
||||
current_app.logger.debug(f'Original question:\n {question}\n\nDetailed question: {detailed_question}')
|
||||
new_interaction.detailed_question = detailed_question
|
||||
new_interaction.detailed_question_at = dt.now(tz.utc)
|
||||
with current_event.create_span("Detail Question"):
|
||||
detailed_question = detail_question(question, language, model_variables, chat_session.session_id)
|
||||
current_app.logger.debug(f'Original question:\n {question}\n\nDetailed question: {detailed_question}')
|
||||
new_interaction.detailed_question = detailed_question
|
||||
new_interaction.detailed_question_at = dt.now(tz.utc)
|
||||
|
||||
retriever = EveAIRetriever(model_variables, tenant_info)
|
||||
llm = model_variables['llm_no_rag']
|
||||
template = model_variables['encyclopedia_template']
|
||||
language_template = create_language_template(template, language)
|
||||
rag_prompt = ChatPromptTemplate.from_template(language_template)
|
||||
setup = RunnablePassthrough()
|
||||
output_parser = StrOutputParser()
|
||||
with current_event.create_span("Detail Answer using LLM"):
|
||||
retriever = EveAIRetriever(model_variables, tenant_info)
|
||||
llm = model_variables['llm_no_rag']
|
||||
template = model_variables['encyclopedia_template']
|
||||
language_template = create_language_template(template, language)
|
||||
rag_prompt = ChatPromptTemplate.from_template(language_template)
|
||||
setup = RunnablePassthrough()
|
||||
output_parser = StrOutputParser()
|
||||
|
||||
new_interaction_embeddings = []
|
||||
new_interaction_embeddings = []
|
||||
|
||||
chain = setup | rag_prompt | llm | output_parser
|
||||
input_question = {"question": detailed_question}
|
||||
chain = setup | rag_prompt | llm | output_parser
|
||||
input_question = {"question": detailed_question}
|
||||
|
||||
# Invoke the chain with the actual question
|
||||
answer = chain.invoke(input_question)
|
||||
new_interaction.answer = answer
|
||||
result = {
|
||||
'answer': answer,
|
||||
'citations': [],
|
||||
'insufficient_info': False
|
||||
}
|
||||
# Invoke the chain with the actual question
|
||||
answer = chain.invoke(input_question)
|
||||
new_interaction.answer = answer
|
||||
result = {
|
||||
'answer': answer,
|
||||
'citations': [],
|
||||
'insufficient_info': False
|
||||
}
|
||||
|
||||
# Disable langchain debugging if set above.
|
||||
# set_debug(False)
|
||||
# Disable langchain debugging if set above.
|
||||
# set_debug(False)
|
||||
|
||||
new_interaction.answer_at = dt.now(tz.utc)
|
||||
chat_session.session_end = dt.now(tz.utc)
|
||||
new_interaction.answer_at = dt.now(tz.utc)
|
||||
chat_session.session_end = dt.now(tz.utc)
|
||||
|
||||
try:
|
||||
db.session.add(chat_session)
|
||||
db.session.add(new_interaction)
|
||||
db.session.commit()
|
||||
return result, new_interaction
|
||||
except SQLAlchemyError as e:
|
||||
current_app.logger.error(f'ask_question: Error saving interaction to database: {e}')
|
||||
raise
|
||||
try:
|
||||
db.session.add(chat_session)
|
||||
db.session.add(new_interaction)
|
||||
db.session.commit()
|
||||
return result, new_interaction
|
||||
except SQLAlchemyError as e:
|
||||
current_app.logger.error(f'ask_question: Error saving interaction to database: {e}')
|
||||
raise
|
||||
|
||||
|
||||
def tasks_ping():
|
||||
|
||||
@@ -1,45 +1,37 @@
|
||||
import io
|
||||
import os
|
||||
|
||||
from pydub import AudioSegment
|
||||
import tempfile
|
||||
from langchain_core.output_parsers import StrOutputParser
|
||||
from langchain_core.prompts import ChatPromptTemplate
|
||||
from langchain_core.runnables import RunnablePassthrough
|
||||
from common.extensions import minio_client
|
||||
from common.utils.model_utils import create_language_template
|
||||
from .processor import Processor
|
||||
import subprocess
|
||||
|
||||
from .transcription_processor import TranscriptionProcessor
|
||||
from common.utils.business_event_context import current_event
|
||||
|
||||
class AudioProcessor(Processor):
|
||||
|
||||
class AudioProcessor(TranscriptionProcessor):
|
||||
def __init__(self, tenant, model_variables, document_version):
|
||||
super().__init__(tenant, model_variables, document_version)
|
||||
self.transcription_client = model_variables['transcription_client']
|
||||
self.transcription_model = model_variables['transcription_model']
|
||||
self.ffmpeg_path = 'ffmpeg'
|
||||
|
||||
def _get_transcription(self):
|
||||
file_data = minio_client.download_document_file(
|
||||
self.tenant.id,
|
||||
self.document_version.doc_id,
|
||||
self.document_version.language,
|
||||
self.document_version.id,
|
||||
self.document_version.file_name
|
||||
)
|
||||
|
||||
def process(self):
|
||||
self._log("Starting Audio processing")
|
||||
try:
|
||||
file_data = minio_client.download_document_file(
|
||||
self.tenant.id,
|
||||
self.document_version.doc_id,
|
||||
self.document_version.language,
|
||||
self.document_version.id,
|
||||
self.document_version.file_name
|
||||
)
|
||||
|
||||
with current_event.create_span("Audio Processing"):
|
||||
compressed_audio = self._compress_audio(file_data)
|
||||
with current_event.create_span("Transcription Generation"):
|
||||
transcription = self._transcribe_audio(compressed_audio)
|
||||
markdown, title = self._generate_markdown_from_transcription(transcription)
|
||||
|
||||
self._save_markdown(markdown)
|
||||
self._log("Finished processing Audio")
|
||||
return markdown, title
|
||||
except Exception as e:
|
||||
self._log(f"Error processing Audio: {str(e)}", level='error')
|
||||
raise
|
||||
return transcription
|
||||
|
||||
def _compress_audio(self, audio_data):
|
||||
self._log("Compressing audio")
|
||||
@@ -159,29 +151,3 @@ class AudioProcessor(Processor):
|
||||
|
||||
return full_transcription
|
||||
|
||||
def _generate_markdown_from_transcription(self, transcription):
|
||||
self._log("Generating markdown from transcription")
|
||||
llm = self.model_variables['llm']
|
||||
template = self.model_variables['transcript_template']
|
||||
language_template = create_language_template(template, self.document_version.language)
|
||||
transcript_prompt = ChatPromptTemplate.from_template(language_template)
|
||||
setup = RunnablePassthrough()
|
||||
output_parser = StrOutputParser()
|
||||
|
||||
chain = setup | transcript_prompt | llm | output_parser
|
||||
|
||||
input_transcript = {'transcript': transcription}
|
||||
markdown = chain.invoke(input_transcript)
|
||||
|
||||
# Extract title from the markdown
|
||||
title = self._extract_title_from_markdown(markdown)
|
||||
|
||||
return markdown, title
|
||||
|
||||
def _extract_title_from_markdown(self, markdown):
|
||||
# Simple extraction of the first header as the title
|
||||
lines = markdown.split('\n')
|
||||
for line in lines:
|
||||
if line.startswith('# '):
|
||||
return line[2:].strip()
|
||||
return "Untitled Audio Transcription"
|
||||
|
||||
@@ -5,6 +5,7 @@ from langchain_core.runnables import RunnablePassthrough
|
||||
from common.extensions import db, minio_client
|
||||
from common.utils.model_utils import create_language_template
|
||||
from .processor import Processor
|
||||
from common.utils.business_event_context import current_event
|
||||
|
||||
|
||||
class HTMLProcessor(Processor):
|
||||
@@ -14,6 +15,9 @@ class HTMLProcessor(Processor):
|
||||
self.html_end_tags = model_variables['html_end_tags']
|
||||
self.html_included_elements = model_variables['html_included_elements']
|
||||
self.html_excluded_elements = model_variables['html_excluded_elements']
|
||||
self.chunk_size = model_variables['processing_chunk_size'] # Adjust this based on your LLM's optimal input size
|
||||
self.chunk_overlap = model_variables[
|
||||
'processing_chunk_overlap'] # Adjust for context preservation between chunks
|
||||
|
||||
def process(self):
|
||||
self._log("Starting HTML processing")
|
||||
@@ -27,8 +31,10 @@ class HTMLProcessor(Processor):
|
||||
)
|
||||
html_content = file_data.decode('utf-8')
|
||||
|
||||
extracted_html, title = self._parse_html(html_content)
|
||||
markdown = self._generate_markdown_from_html(extracted_html)
|
||||
with current_event.create_span("HTML Content Extraction"):
|
||||
extracted_html, title = self._parse_html(html_content)
|
||||
with current_event.create_span("Markdown Generation"):
|
||||
markdown = self._generate_markdown_from_html(extracted_html)
|
||||
|
||||
self._save_markdown(markdown)
|
||||
self._log("Finished processing HTML")
|
||||
@@ -70,7 +76,7 @@ class HTMLProcessor(Processor):
|
||||
chain = setup | parse_prompt | llm | output_parser
|
||||
|
||||
soup = BeautifulSoup(html_content, 'lxml')
|
||||
chunks = self._split_content(soup)
|
||||
chunks = self._split_content(soup, self.chunk_size)
|
||||
|
||||
markdown_chunks = []
|
||||
for chunk in chunks:
|
||||
|
||||
@@ -10,16 +10,17 @@ from langchain_core.runnables import RunnablePassthrough
|
||||
from common.extensions import minio_client
|
||||
from common.utils.model_utils import create_language_template
|
||||
from .processor import Processor
|
||||
from common.utils.business_event_context import current_event
|
||||
|
||||
|
||||
class PDFProcessor(Processor):
|
||||
def __init__(self, tenant, model_variables, document_version):
|
||||
super().__init__(tenant, model_variables, document_version)
|
||||
# PDF-specific initialization
|
||||
self.chunk_size = model_variables['PDF_chunk_size']
|
||||
self.chunk_overlap = model_variables['PDF_chunk_overlap']
|
||||
self.min_chunk_size = model_variables['PDF_min_chunk_size']
|
||||
self.max_chunk_size = model_variables['PDF_max_chunk_size']
|
||||
self.chunk_size = model_variables['processing_chunk_size']
|
||||
self.chunk_overlap = model_variables['processing_chunk_overlap']
|
||||
self.min_chunk_size = model_variables['processing_min_chunk_size']
|
||||
self.max_chunk_size = model_variables['processing_max_chunk_size']
|
||||
|
||||
def process(self):
|
||||
self._log("Starting PDF processing")
|
||||
@@ -32,13 +33,14 @@ class PDFProcessor(Processor):
|
||||
self.document_version.file_name
|
||||
)
|
||||
|
||||
extracted_content = self._extract_content(file_data)
|
||||
structured_content, title = self._structure_content(extracted_content)
|
||||
with current_event.create_span("PDF Extraction"):
|
||||
extracted_content = self._extract_content(file_data)
|
||||
structured_content, title = self._structure_content(extracted_content)
|
||||
|
||||
llm_chunks = self._split_content_for_llm(structured_content)
|
||||
markdown = self._process_chunks_with_llm(llm_chunks)
|
||||
|
||||
self._save_markdown(markdown)
|
||||
with current_event.create_span("Markdown Generation"):
|
||||
llm_chunks = self._split_content_for_llm(structured_content)
|
||||
markdown = self._process_chunks_with_llm(llm_chunks)
|
||||
self._save_markdown(markdown)
|
||||
self._log("Finished processing PDF")
|
||||
return markdown, title
|
||||
except Exception as e:
|
||||
@@ -228,12 +230,7 @@ class PDFProcessor(Processor):
|
||||
for chunk in chunks:
|
||||
input = {"pdf_content": chunk}
|
||||
result = chain.invoke(input)
|
||||
# Remove Markdown code block delimiters if present
|
||||
result = result.strip()
|
||||
if result.startswith("```markdown"):
|
||||
result = result[len("```markdown"):].strip()
|
||||
if result.endswith("```"):
|
||||
result = result[:-3].strip()
|
||||
result = self._clean_markdown(result)
|
||||
markdown_chunks.append(result)
|
||||
|
||||
return "\n\n".join(markdown_chunks)
|
||||
|
||||
@@ -40,3 +40,13 @@ class Processor(ABC):
|
||||
filename,
|
||||
content.encode('utf-8')
|
||||
)
|
||||
|
||||
def _clean_markdown(self, markdown):
|
||||
markdown = markdown.strip()
|
||||
if markdown.startswith("```markdown"):
|
||||
markdown = markdown[len("```markdown"):].strip()
|
||||
if markdown.endswith("```"):
|
||||
markdown = markdown[:-3].strip()
|
||||
|
||||
return markdown
|
||||
|
||||
|
||||
@@ -1,37 +1,19 @@
|
||||
import re
|
||||
from langchain_core.output_parsers import StrOutputParser
|
||||
from langchain_core.prompts import ChatPromptTemplate
|
||||
from langchain_core.runnables import RunnablePassthrough
|
||||
from common.extensions import minio_client
|
||||
from common.utils.model_utils import create_language_template
|
||||
from .processor import Processor
|
||||
from .transcription_processor import TranscriptionProcessor
|
||||
import re
|
||||
|
||||
|
||||
class SRTProcessor(Processor):
|
||||
def __init__(self, tenant, model_variables, document_version):
|
||||
super().__init__(tenant, model_variables, document_version)
|
||||
|
||||
def process(self):
|
||||
self._log("Starting SRT processing")
|
||||
try:
|
||||
file_data = minio_client.download_document_file(
|
||||
self.tenant.id,
|
||||
self.document_version.doc_id,
|
||||
self.document_version.language,
|
||||
self.document_version.id,
|
||||
self.document_version.file_name
|
||||
)
|
||||
|
||||
srt_content = file_data.decode('utf-8')
|
||||
cleaned_transcription = self._clean_srt(srt_content)
|
||||
markdown, title = self._generate_markdown_from_transcription(cleaned_transcription)
|
||||
|
||||
self._save_markdown(markdown)
|
||||
self._log("Finished processing SRT")
|
||||
return markdown, title
|
||||
except Exception as e:
|
||||
self._log(f"Error processing SRT: {str(e)}", level='error')
|
||||
raise
|
||||
class SRTProcessor(TranscriptionProcessor):
|
||||
def _get_transcription(self):
|
||||
file_data = minio_client.download_document_file(
|
||||
self.tenant.id,
|
||||
self.document_version.doc_id,
|
||||
self.document_version.language,
|
||||
self.document_version.id,
|
||||
self.document_version.file_name
|
||||
)
|
||||
srt_content = file_data.decode('utf-8')
|
||||
return self._clean_srt(srt_content)
|
||||
|
||||
def _clean_srt(self, srt_content):
|
||||
# Remove timecodes and subtitle numbers
|
||||
@@ -50,31 +32,3 @@ class SRTProcessor(Processor):
|
||||
|
||||
return cleaned_text
|
||||
|
||||
def _generate_markdown_from_transcription(self, transcription):
|
||||
self._log("Generating markdown from transcription")
|
||||
llm = self.model_variables['llm']
|
||||
template = self.model_variables['transcript_template']
|
||||
language_template = create_language_template(template, self.document_version.language)
|
||||
transcript_prompt = ChatPromptTemplate.from_template(language_template)
|
||||
setup = RunnablePassthrough()
|
||||
output_parser = StrOutputParser()
|
||||
|
||||
chain = setup | transcript_prompt | llm | output_parser
|
||||
|
||||
input_transcript = {'transcript': transcription}
|
||||
markdown = chain.invoke(input_transcript)
|
||||
|
||||
# Extract title from the markdown
|
||||
title = self._extract_title_from_markdown(markdown)
|
||||
|
||||
return markdown, title
|
||||
|
||||
def _extract_title_from_markdown(self, markdown):
|
||||
# Simple extraction of the first header as the title
|
||||
lines = markdown.split('\n')
|
||||
for line in lines:
|
||||
if line.startswith('# '):
|
||||
return line[2:].strip()
|
||||
return "Untitled SRT Transcription"
|
||||
|
||||
|
||||
|
||||
94
eveai_workers/Processors/transcription_processor.py
Normal file
94
eveai_workers/Processors/transcription_processor.py
Normal file
@@ -0,0 +1,94 @@
|
||||
# transcription_processor.py
|
||||
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
||||
from langchain_core.output_parsers import StrOutputParser
|
||||
from langchain_core.prompts import ChatPromptTemplate
|
||||
from langchain_core.runnables import RunnablePassthrough
|
||||
|
||||
from common.utils.model_utils import create_language_template
|
||||
from .processor import Processor
|
||||
from common.utils.business_event_context import current_event
|
||||
|
||||
|
||||
class TranscriptionProcessor(Processor):
|
||||
def __init__(self, tenant, model_variables, document_version):
|
||||
super().__init__(tenant, model_variables, document_version)
|
||||
self.chunk_size = model_variables['processing_chunk_size']
|
||||
self.chunk_overlap = model_variables['processing_chunk_overlap']
|
||||
|
||||
def process(self):
|
||||
self._log("Starting Transcription processing")
|
||||
try:
|
||||
with current_event.create_span("Transcription Generation"):
|
||||
transcription = self._get_transcription()
|
||||
with current_event.create_span("Markdown Generation"):
|
||||
chunks = self._chunk_transcription(transcription)
|
||||
markdown_chunks = self._process_chunks(chunks)
|
||||
full_markdown = self._combine_markdown_chunks(markdown_chunks)
|
||||
self._save_markdown(full_markdown)
|
||||
self._log("Finished processing Transcription")
|
||||
return full_markdown, self._extract_title_from_markdown(full_markdown)
|
||||
except Exception as e:
|
||||
self._log(f"Error processing Transcription: {str(e)}", level='error')
|
||||
raise
|
||||
|
||||
def _get_transcription(self):
|
||||
# This method should be implemented by child classes
|
||||
raise NotImplementedError
|
||||
|
||||
def _chunk_transcription(self, transcription):
|
||||
text_splitter = RecursiveCharacterTextSplitter(
|
||||
chunk_size=self.chunk_size,
|
||||
chunk_overlap=self.chunk_overlap,
|
||||
length_function=len,
|
||||
separators=["\n\n", "\n", " ", ""]
|
||||
)
|
||||
return text_splitter.split_text(transcription)
|
||||
|
||||
def _process_chunks(self, chunks):
|
||||
self._log("Generating markdown from transcription")
|
||||
llm = self.model_variables['llm']
|
||||
template = self.model_variables['transcript_template']
|
||||
language_template = create_language_template(template, self.document_version.language)
|
||||
transcript_prompt = ChatPromptTemplate.from_template(language_template)
|
||||
setup = RunnablePassthrough()
|
||||
output_parser = StrOutputParser()
|
||||
|
||||
chain = setup | transcript_prompt | llm | output_parser
|
||||
|
||||
markdown_chunks = []
|
||||
previous_part = ""
|
||||
for i, chunk in enumerate(chunks):
|
||||
self._log(f"Processing chunk {i + 1} of {len(chunks)}")
|
||||
self._log(f"Previous part: {previous_part}")
|
||||
input_transcript = {
|
||||
'transcript': chunk,
|
||||
'previous_part': previous_part
|
||||
}
|
||||
markdown = chain.invoke(input_transcript)
|
||||
markdown = self._clean_markdown(markdown)
|
||||
markdown_chunks.append(markdown)
|
||||
|
||||
# Extract the last part for the next iteration
|
||||
lines = markdown.split('\n')
|
||||
last_header = None
|
||||
for line in reversed(lines):
|
||||
if line.startswith('#'):
|
||||
last_header = line
|
||||
break
|
||||
if last_header:
|
||||
header_index = lines.index(last_header)
|
||||
previous_part = '\n'.join(lines[header_index:])
|
||||
else:
|
||||
previous_part = lines[-1] if lines else ""
|
||||
|
||||
return markdown_chunks
|
||||
|
||||
def _combine_markdown_chunks(self, markdown_chunks):
|
||||
return "\n\n".join(markdown_chunks)
|
||||
|
||||
def _extract_title_from_markdown(self, markdown):
|
||||
lines = markdown.split('\n')
|
||||
for line in lines:
|
||||
if line.startswith('# '):
|
||||
return line[2:].strip()
|
||||
return "Untitled Transcription"
|
||||
@@ -24,79 +24,90 @@ from eveai_workers.Processors.html_processor import HTMLProcessor
|
||||
from eveai_workers.Processors.pdf_processor import PDFProcessor
|
||||
from eveai_workers.Processors.srt_processor import SRTProcessor
|
||||
|
||||
from common.utils.business_event import BusinessEvent
|
||||
from common.utils.business_event_context import current_event
|
||||
|
||||
|
||||
# Healthcheck task
|
||||
@current_celery.task(name='ping', queue='embeddings')
|
||||
def ping():
|
||||
return 'pong'
|
||||
|
||||
|
||||
@current_celery.task(name='create_embeddings', queue='embeddings')
|
||||
def create_embeddings(tenant_id, document_version_id):
|
||||
current_app.logger.info(f'Creating embeddings for tenant {tenant_id} on document version {document_version_id}.')
|
||||
# BusinessEvent creates a context, which is why we need to use it with a with block
|
||||
with BusinessEvent('Create Embeddings', tenant_id, document_version_id=document_version_id):
|
||||
current_app.logger.info(f'Creating embeddings for tenant {tenant_id} on document version {document_version_id}')
|
||||
try:
|
||||
# Retrieve Tenant for which we are processing
|
||||
tenant = Tenant.query.get(tenant_id)
|
||||
if tenant is None:
|
||||
raise Exception(f'Tenant {tenant_id} not found')
|
||||
|
||||
try:
|
||||
# Retrieve Tenant for which we are processing
|
||||
tenant = Tenant.query.get(tenant_id)
|
||||
if tenant is None:
|
||||
raise Exception(f'Tenant {tenant_id} not found')
|
||||
# Ensure we are working in the correct database schema
|
||||
Database(tenant_id).switch_schema()
|
||||
|
||||
# Ensure we are working in the correct database schema
|
||||
Database(tenant_id).switch_schema()
|
||||
# Select variables to work with depending on tenant and model
|
||||
model_variables = select_model_variables(tenant)
|
||||
current_app.logger.debug(f'Model variables: {model_variables}')
|
||||
|
||||
# Select variables to work with depending on tenant and model
|
||||
model_variables = select_model_variables(tenant)
|
||||
current_app.logger.debug(f'Model variables: {model_variables}')
|
||||
# Retrieve document version to process
|
||||
document_version = DocumentVersion.query.get(document_version_id)
|
||||
if document_version is None:
|
||||
raise Exception(f'Document version {document_version_id} not found')
|
||||
|
||||
# Retrieve document version to process
|
||||
document_version = DocumentVersion.query.get(document_version_id)
|
||||
if document_version is None:
|
||||
raise Exception(f'Document version {document_version_id} not found')
|
||||
except Exception as e:
|
||||
current_app.logger.error(f'Create Embeddings request received '
|
||||
f'for non existing document version {document_version_id} '
|
||||
f'for tenant {tenant_id}, '
|
||||
f'error: {e}')
|
||||
raise
|
||||
|
||||
except Exception as e:
|
||||
current_app.logger.error(f'Create Embeddings request received '
|
||||
f'for non existing document version {document_version_id} '
|
||||
f'for tenant {tenant_id}, '
|
||||
f'error: {e}')
|
||||
raise
|
||||
try:
|
||||
db.session.add(document_version)
|
||||
|
||||
try:
|
||||
db.session.add(document_version)
|
||||
# start processing
|
||||
document_version.processing = True
|
||||
document_version.processing_started_at = dt.now(tz.utc)
|
||||
document_version.processing_finished_at = None
|
||||
document_version.processing_error = None
|
||||
|
||||
# start processing
|
||||
document_version.processing = True
|
||||
document_version.processing_started_at = dt.now(tz.utc)
|
||||
document_version.processing_finished_at = None
|
||||
document_version.processing_error = None
|
||||
db.session.commit()
|
||||
except SQLAlchemyError as e:
|
||||
current_app.logger.error(f'Unable to save Embedding status information '
|
||||
f'in document version {document_version_id} '
|
||||
f'for tenant {tenant_id}')
|
||||
raise
|
||||
|
||||
db.session.commit()
|
||||
except SQLAlchemyError as e:
|
||||
current_app.logger.error(f'Unable to save Embedding status information '
|
||||
f'in document version {document_version_id} '
|
||||
f'for tenant {tenant_id}')
|
||||
raise
|
||||
delete_embeddings_for_document_version(document_version)
|
||||
|
||||
delete_embeddings_for_document_version(document_version)
|
||||
try:
|
||||
match document_version.file_type:
|
||||
case 'pdf':
|
||||
process_pdf(tenant, model_variables, document_version)
|
||||
case 'html':
|
||||
process_html(tenant, model_variables, document_version)
|
||||
case 'srt':
|
||||
process_srt(tenant, model_variables, document_version)
|
||||
case 'mp4' | 'mp3' | 'ogg':
|
||||
process_audio(tenant, model_variables, document_version)
|
||||
case _:
|
||||
raise Exception(f'No functionality defined for file type {document_version.file_type} '
|
||||
f'for tenant {tenant_id} '
|
||||
f'while creating embeddings for document version {document_version_id}')
|
||||
current_event.log("Finished Embedding Creation Task")
|
||||
|
||||
try:
|
||||
match document_version.file_type:
|
||||
case 'pdf':
|
||||
process_pdf(tenant, model_variables, document_version)
|
||||
case 'html':
|
||||
process_html(tenant, model_variables, document_version)
|
||||
case 'srt':
|
||||
process_srt(tenant, model_variables, document_version)
|
||||
case 'mp4' | 'mp3' | 'ogg':
|
||||
process_audio(tenant, model_variables, document_version)
|
||||
case _:
|
||||
raise Exception(f'No functionality defined for file type {document_version.file_type} '
|
||||
f'for tenant {tenant_id} '
|
||||
f'while creating embeddings for document version {document_version_id}')
|
||||
|
||||
except Exception as e:
|
||||
current_app.logger.error(f'Error creating embeddings for tenant {tenant_id} '
|
||||
f'on document version {document_version_id} '
|
||||
f'error: {e}')
|
||||
document_version.processing = False
|
||||
document_version.processing_finished_at = dt.now(tz.utc)
|
||||
document_version.processing_error = str(e)[:255]
|
||||
db.session.commit()
|
||||
create_embeddings.update_state(state=states.FAILURE)
|
||||
raise
|
||||
except Exception as e:
|
||||
current_app.logger.error(f'Error creating embeddings for tenant {tenant_id} '
|
||||
f'on document version {document_version_id} '
|
||||
f'error: {e}')
|
||||
document_version.processing = False
|
||||
document_version.processing_finished_at = dt.now(tz.utc)
|
||||
document_version.processing_error = str(e)[:255]
|
||||
db.session.commit()
|
||||
create_embeddings.update_state(state=states.FAILURE)
|
||||
raise
|
||||
|
||||
|
||||
def delete_embeddings_for_document_version(document_version):
|
||||
@@ -112,35 +123,43 @@ def delete_embeddings_for_document_version(document_version):
|
||||
|
||||
|
||||
def process_pdf(tenant, model_variables, document_version):
|
||||
processor = PDFProcessor(tenant, model_variables, document_version)
|
||||
markdown, title = processor.process()
|
||||
with current_event.create_span("PDF Processing"):
|
||||
processor = PDFProcessor(tenant, model_variables, document_version)
|
||||
markdown, title = processor.process()
|
||||
|
||||
# Process markdown and embed
|
||||
embed_markdown(tenant, model_variables, document_version, markdown, title)
|
||||
with current_event.create_span("Embedding"):
|
||||
embed_markdown(tenant, model_variables, document_version, markdown, title)
|
||||
|
||||
|
||||
def process_html(tenant, model_variables, document_version):
|
||||
processor = HTMLProcessor(tenant, model_variables, document_version)
|
||||
markdown, title = processor.process()
|
||||
with current_event.create_span("HTML Processing"):
|
||||
processor = HTMLProcessor(tenant, model_variables, document_version)
|
||||
markdown, title = processor.process()
|
||||
|
||||
# Process markdown and embed
|
||||
embed_markdown(tenant, model_variables, document_version, markdown, title)
|
||||
with current_event.create_span("Embedding"):
|
||||
embed_markdown(tenant, model_variables, document_version, markdown, title)
|
||||
|
||||
|
||||
def process_audio(tenant, model_variables, document_version):
|
||||
processor = AudioProcessor(tenant, model_variables, document_version)
|
||||
markdown, title = processor.process()
|
||||
with current_event.create_span("Audio Processing"):
|
||||
processor = AudioProcessor(tenant, model_variables, document_version)
|
||||
markdown, title = processor.process()
|
||||
|
||||
# Process markdown and embed
|
||||
embed_markdown(tenant, model_variables, document_version, markdown, title)
|
||||
with current_event.create_span("Embedding"):
|
||||
embed_markdown(tenant, model_variables, document_version, markdown, title)
|
||||
|
||||
|
||||
def process_srt(tenant, model_variables, document_version):
|
||||
processor = SRTProcessor(tenant, model_variables, document_version)
|
||||
markdown, title = processor.process()
|
||||
with current_event.create_span("SRT Processing"):
|
||||
processor = SRTProcessor(tenant, model_variables, document_version)
|
||||
markdown, title = processor.process()
|
||||
|
||||
# Process markdown and embed
|
||||
embed_markdown(tenant, model_variables, document_version, markdown, title)
|
||||
with current_event.create_span("Embedding"):
|
||||
embed_markdown(tenant, model_variables, document_version, markdown, title)
|
||||
|
||||
|
||||
def embed_markdown(tenant, model_variables, document_version, markdown, title):
|
||||
@@ -175,6 +194,7 @@ def embed_markdown(tenant, model_variables, document_version, markdown, title):
|
||||
|
||||
|
||||
def enrich_chunks(tenant, model_variables, document_version, title, chunks):
|
||||
current_event.log("Starting Enriching Chunks Processing")
|
||||
current_app.logger.debug(f'Enriching chunks for tenant {tenant.id} '
|
||||
f'on document version {document_version.id}')
|
||||
|
||||
@@ -184,14 +204,21 @@ def enrich_chunks(tenant, model_variables, document_version, title, chunks):
|
||||
|
||||
chunk_total_context = (f'Filename: {document_version.file_name}\n'
|
||||
f'User Context:\n{document_version.user_context}\n\n'
|
||||
f'User Metadata:\n{document_version.user_metadata}\n\n'
|
||||
f'Title: {title}\n'
|
||||
f'{summary}\n'
|
||||
f'{document_version.system_context}\n\n')
|
||||
f'Summary:\n{summary}\n'
|
||||
f'System Context:\n{document_version.system_context}\n\n'
|
||||
f'System Metadata:\n{document_version.system_metadata}\n\n'
|
||||
)
|
||||
enriched_chunks = []
|
||||
initial_chunk = (f'Filename: {document_version.file_name}\n'
|
||||
f'User Context:\n{document_version.user_context}\n\n'
|
||||
f'User Metadata:\n{document_version.user_metadata}\n\n'
|
||||
f'Title: {title}\n'
|
||||
f'{chunks[0]}')
|
||||
f'System Context:\n{document_version.system_context}\n\n'
|
||||
f'System Metadata:\n{document_version.system_metadata}\n\n'
|
||||
f'{chunks[0]}'
|
||||
)
|
||||
|
||||
enriched_chunks.append(initial_chunk)
|
||||
for chunk in chunks[1:]:
|
||||
@@ -200,11 +227,13 @@ def enrich_chunks(tenant, model_variables, document_version, title, chunks):
|
||||
|
||||
current_app.logger.debug(f'Finished enriching chunks for tenant {tenant.id} '
|
||||
f'on document version {document_version.id}')
|
||||
current_event.log("Finished Enriching Chunks Processing")
|
||||
|
||||
return enriched_chunks
|
||||
|
||||
|
||||
def summarize_chunk(tenant, model_variables, document_version, chunk):
|
||||
current_event.log("Starting Summarizing Chunk")
|
||||
current_app.logger.debug(f'Summarizing chunk for tenant {tenant.id} '
|
||||
f'on document version {document_version.id}')
|
||||
llm = model_variables['llm']
|
||||
@@ -222,6 +251,7 @@ def summarize_chunk(tenant, model_variables, document_version, chunk):
|
||||
summary = chain.invoke({"text": chunk})
|
||||
current_app.logger.debug(f'Finished summarizing chunk for tenant {tenant.id} '
|
||||
f'on document version {document_version.id}.')
|
||||
current_event.log("Finished Summarizing Chunk")
|
||||
return summary
|
||||
except LangChainException as e:
|
||||
current_app.logger.error(f'Error creating summary for chunk enrichment for tenant {tenant.id} '
|
||||
@@ -231,6 +261,7 @@ def summarize_chunk(tenant, model_variables, document_version, chunk):
|
||||
|
||||
|
||||
def embed_chunks(tenant, model_variables, document_version, chunks):
|
||||
current_event.log("Starting Embedding Chunks Processing")
|
||||
current_app.logger.debug(f'Embedding chunks for tenant {tenant.id} '
|
||||
f'on document version {document_version.id}')
|
||||
embedding_model = model_variables['embedding_model']
|
||||
@@ -255,6 +286,8 @@ def embed_chunks(tenant, model_variables, document_version, chunks):
|
||||
new_embedding.embedding = embedding
|
||||
new_embeddings.append(new_embedding)
|
||||
|
||||
current_app.logger.debug(f'Finished embedding chunks for tenant {tenant.id} ')
|
||||
|
||||
return new_embeddings
|
||||
|
||||
|
||||
@@ -268,244 +301,6 @@ def log_parsing_info(tenant, tags, included_elements, excluded_elements, exclude
|
||||
current_app.embed_tuning_logger.debug(f'First element to parse: {elements_to_parse[0]}')
|
||||
|
||||
|
||||
# def process_youtube(tenant, model_variables, document_version):
|
||||
# download_file_name = f'{document_version.id}.mp4'
|
||||
# compressed_file_name = f'{document_version.id}.mp3'
|
||||
# transcription_file_name = f'{document_version.id}.txt'
|
||||
# markdown_file_name = f'{document_version.id}.md'
|
||||
#
|
||||
# # Remove existing files (in case of a re-processing of the file
|
||||
# minio_client.delete_document_file(tenant.id, document_version.doc_id, document_version.language,
|
||||
# document_version.id, download_file_name)
|
||||
# minio_client.delete_document_file(tenant.id, document_version.doc_id, document_version.language,
|
||||
# document_version.id, compressed_file_name)
|
||||
# minio_client.delete_document_file(tenant.id, document_version.doc_id, document_version.language,
|
||||
# document_version.id, transcription_file_name)
|
||||
# minio_client.delete_document_file(tenant.id, document_version.doc_id, document_version.language,
|
||||
# document_version.id, markdown_file_name)
|
||||
#
|
||||
# of, title, description, author = download_youtube(document_version.url, tenant.id, document_version,
|
||||
# download_file_name)
|
||||
# document_version.system_context = f'Title: {title}\nDescription: {description}\nAuthor: {author}'
|
||||
# compress_audio(tenant.id, document_version, download_file_name, compressed_file_name)
|
||||
# transcribe_audio(tenant.id, document_version, compressed_file_name, transcription_file_name, model_variables)
|
||||
# annotate_transcription(tenant, document_version, transcription_file_name, markdown_file_name, model_variables)
|
||||
#
|
||||
# potential_chunks = create_potential_chunks_for_markdown(tenant.id, document_version, markdown_file_name)
|
||||
# actual_chunks = combine_chunks_for_markdown(potential_chunks, model_variables['min_chunk_size'],
|
||||
# model_variables['max_chunk_size'])
|
||||
#
|
||||
# enriched_chunks = enrich_chunks(tenant, document_version, actual_chunks)
|
||||
# embeddings = embed_chunks(tenant, model_variables, document_version, enriched_chunks)
|
||||
#
|
||||
# try:
|
||||
# db.session.add(document_version)
|
||||
# document_version.processing_finished_at = dt.now(tz.utc)
|
||||
# document_version.processing = False
|
||||
# db.session.add_all(embeddings)
|
||||
# db.session.commit()
|
||||
# except SQLAlchemyError as e:
|
||||
# current_app.logger.error(f'Error saving embedding information for tenant {tenant.id} '
|
||||
# f'on Youtube document version {document_version.id}'
|
||||
# f'error: {e}')
|
||||
# raise
|
||||
#
|
||||
# current_app.logger.info(f'Embeddings created successfully for tenant {tenant.id} '
|
||||
# f'on Youtube document version {document_version.id} :-)')
|
||||
#
|
||||
#
|
||||
# def download_youtube(url, tenant_id, document_version, file_name):
|
||||
# try:
|
||||
# current_app.logger.info(f'Downloading YouTube video: {url} for tenant: {tenant_id}')
|
||||
# yt = YouTube(url)
|
||||
# stream = yt.streams.get_audio_only()
|
||||
#
|
||||
# with tempfile.NamedTemporaryFile(delete=False) as temp_file:
|
||||
# stream.download(output_path=temp_file.name)
|
||||
# with open(temp_file.name, 'rb') as f:
|
||||
# file_data = f.read()
|
||||
#
|
||||
# minio_client.upload_document_file(tenant_id, document_version.doc_id, document_version.language,
|
||||
# document_version.id,
|
||||
# file_name, file_data)
|
||||
#
|
||||
# current_app.logger.info(f'Downloaded YouTube video: {url} for tenant: {tenant_id}')
|
||||
# return file_name, yt.title, yt.description, yt.author
|
||||
# except Exception as e:
|
||||
# current_app.logger.error(f'Error downloading YouTube video: {url} for tenant: {tenant_id} with error: {e}')
|
||||
# raise
|
||||
#
|
||||
#
|
||||
# def compress_audio(tenant_id, document_version, input_file, output_file):
|
||||
# try:
|
||||
# current_app.logger.info(f'Compressing audio for tenant: {tenant_id}')
|
||||
#
|
||||
# input_data = minio_client.download_document_file(tenant_id, document_version.doc_id, document_version.language,
|
||||
# document_version.id, input_file)
|
||||
#
|
||||
# with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_input:
|
||||
# temp_input.write(input_data)
|
||||
# temp_input.flush()
|
||||
#
|
||||
# with tempfile.NamedTemporaryFile(delete=False, suffix='.mp3') as temp_output:
|
||||
# result = subprocess.run(
|
||||
# ['ffmpeg', '-i', temp_input.name, '-b:a', '64k', '-f', 'mp3', temp_output.name],
|
||||
# capture_output=True,
|
||||
# text=True
|
||||
# )
|
||||
#
|
||||
# if result.returncode != 0:
|
||||
# raise Exception(f"Compression failed: {result.stderr}")
|
||||
#
|
||||
# with open(temp_output.name, 'rb') as f:
|
||||
# compressed_data = f.read()
|
||||
#
|
||||
# minio_client.upload_document_file(tenant_id, document_version.doc_id, document_version.language,
|
||||
# document_version.id,
|
||||
# output_file, compressed_data)
|
||||
#
|
||||
# current_app.logger.info(f'Compressed audio for tenant: {tenant_id}')
|
||||
# except Exception as e:
|
||||
# current_app.logger.error(f'Error compressing audio for tenant: {tenant_id} with error: {e}')
|
||||
# raise
|
||||
#
|
||||
#
|
||||
# def transcribe_audio(tenant_id, document_version, input_file, output_file, model_variables):
|
||||
# try:
|
||||
# current_app.logger.info(f'Transcribing audio for tenant: {tenant_id}')
|
||||
# client = model_variables['transcription_client']
|
||||
# model = model_variables['transcription_model']
|
||||
#
|
||||
# # Download the audio file from MinIO
|
||||
# audio_data = minio_client.download_document_file(tenant_id, document_version.doc_id, document_version.language,
|
||||
# document_version.id, input_file)
|
||||
#
|
||||
# # Load the audio data into pydub
|
||||
# audio = AudioSegment.from_mp3(io.BytesIO(audio_data))
|
||||
#
|
||||
# # Define segment length (e.g., 10 minutes)
|
||||
# segment_length = 10 * 60 * 1000 # 10 minutes in milliseconds
|
||||
#
|
||||
# transcriptions = []
|
||||
#
|
||||
# # Split audio into segments and transcribe each
|
||||
# for i, chunk in enumerate(audio[::segment_length]):
|
||||
# current_app.logger.debug(f'Transcribing chunk {i + 1} of {len(audio) // segment_length + 1}')
|
||||
#
|
||||
# with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_audio:
|
||||
# chunk.export(temp_audio.name, format="mp3")
|
||||
#
|
||||
# with open(temp_audio.name, 'rb') as audio_segment:
|
||||
# transcription = client.audio.transcriptions.create(
|
||||
# file=audio_segment,
|
||||
# model=model,
|
||||
# language=document_version.language,
|
||||
# response_format='verbose_json',
|
||||
# )
|
||||
#
|
||||
# transcriptions.append(transcription.text)
|
||||
#
|
||||
# os.unlink(temp_audio.name) # Delete the temporary file
|
||||
#
|
||||
# # Combine all transcriptions
|
||||
# full_transcription = " ".join(transcriptions)
|
||||
#
|
||||
# # Upload the full transcription to MinIO
|
||||
# minio_client.upload_document_file(
|
||||
# tenant_id,
|
||||
# document_version.doc_id,
|
||||
# document_version.language,
|
||||
# document_version.id,
|
||||
# output_file,
|
||||
# full_transcription.encode('utf-8')
|
||||
# )
|
||||
#
|
||||
# current_app.logger.info(f'Transcribed audio for tenant: {tenant_id}')
|
||||
# except Exception as e:
|
||||
# current_app.logger.error(f'Error transcribing audio for tenant: {tenant_id}, with error: {e}')
|
||||
# raise
|
||||
#
|
||||
#
|
||||
# def annotate_transcription(tenant, document_version, input_file, output_file, model_variables):
|
||||
# try:
|
||||
# current_app.logger.debug(f'Annotating transcription for tenant {tenant.id}')
|
||||
#
|
||||
# char_splitter = CharacterTextSplitter(separator='.',
|
||||
# chunk_size=model_variables['annotation_chunk_length'],
|
||||
# chunk_overlap=0)
|
||||
#
|
||||
# headers_to_split_on = [
|
||||
# ("#", "Header 1"),
|
||||
# ("##", "Header 2"),
|
||||
# ]
|
||||
# markdown_splitter = MarkdownHeaderTextSplitter(headers_to_split_on, strip_headers=False)
|
||||
#
|
||||
# llm = model_variables['llm']
|
||||
# template = model_variables['transcript_template']
|
||||
# language_template = create_language_template(template, document_version.language)
|
||||
# transcript_prompt = ChatPromptTemplate.from_template(language_template)
|
||||
# setup = RunnablePassthrough()
|
||||
# output_parser = StrOutputParser()
|
||||
#
|
||||
# # Download the transcription file from MinIO
|
||||
# transcript_data = minio_client.download_document_file(tenant.id, document_version.doc_id,
|
||||
# document_version.language, document_version.id,
|
||||
# input_file)
|
||||
# transcript = transcript_data.decode('utf-8')
|
||||
#
|
||||
# chain = setup | transcript_prompt | llm | output_parser
|
||||
#
|
||||
# chunks = char_splitter.split_text(transcript)
|
||||
# all_markdown_chunks = []
|
||||
# last_markdown_chunk = ''
|
||||
# for chunk in chunks:
|
||||
# current_app.logger.debug(f'Annotating next chunk of {len(chunks)} for tenant {tenant.id}')
|
||||
# full_input = last_markdown_chunk + '\n' + chunk
|
||||
# if tenant.embed_tuning:
|
||||
# current_app.embed_tuning_logger.debug(f'Annotating chunk: \n '
|
||||
# f'------------------\n'
|
||||
# f'{full_input}\n'
|
||||
# f'------------------\n')
|
||||
# input_transcript = {'transcript': full_input}
|
||||
# markdown = chain.invoke(input_transcript)
|
||||
# # GPT-4o returns some kind of content description: ```markdown <text> ```
|
||||
# if markdown.startswith("```markdown"):
|
||||
# markdown = "\n".join(markdown.strip().split("\n")[1:-1])
|
||||
# if tenant.embed_tuning:
|
||||
# current_app.embed_tuning_logger.debug(f'Markdown Received: \n '
|
||||
# f'------------------\n'
|
||||
# f'{markdown}\n'
|
||||
# f'------------------\n')
|
||||
# md_header_splits = markdown_splitter.split_text(markdown)
|
||||
# markdown_chunks = [doc.page_content for doc in md_header_splits]
|
||||
# # claude-3.5-sonnet returns introductory text
|
||||
# if not markdown_chunks[0].startswith('#'):
|
||||
# markdown_chunks.pop(0)
|
||||
# last_markdown_chunk = markdown_chunks[-1]
|
||||
# last_markdown_chunk = "\n".join(markdown.strip().split("\n")[1:])
|
||||
# markdown_chunks.pop()
|
||||
# all_markdown_chunks += markdown_chunks
|
||||
#
|
||||
# all_markdown_chunks += [last_markdown_chunk]
|
||||
#
|
||||
# annotated_transcript = '\n'.join(all_markdown_chunks)
|
||||
#
|
||||
# # Upload the annotated transcript to MinIO
|
||||
# minio_client.upload_document_file(
|
||||
# tenant.id,
|
||||
# document_version.doc_id,
|
||||
# document_version.language,
|
||||
# document_version.id,
|
||||
# output_file,
|
||||
# annotated_transcript.encode('utf-8')
|
||||
# )
|
||||
#
|
||||
# current_app.logger.info(f'Annotated transcription for tenant {tenant.id}')
|
||||
# except Exception as e:
|
||||
# current_app.logger.error(f'Error annotating transcription for tenant {tenant.id}, with error: {e}')
|
||||
# raise
|
||||
|
||||
|
||||
def create_potential_chunks_for_markdown(tenant_id, document_version, input_file):
|
||||
try:
|
||||
current_app.logger.info(f'Creating potential chunks for tenant {tenant_id}')
|
||||
|
||||
32
migrations/public/versions/083ccd8206ea_add_tenant_type.py
Normal file
32
migrations/public/versions/083ccd8206ea_add_tenant_type.py
Normal file
@@ -0,0 +1,32 @@
|
||||
"""Add Tenant Type
|
||||
|
||||
Revision ID: 083ccd8206ea
|
||||
Revises: ce6f5b62bbfb
|
||||
Create Date: 2024-09-12 11:30:41.958117
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = '083ccd8206ea'
|
||||
down_revision = 'ce6f5b62bbfb'
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade():
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table('tenant', schema=None) as batch_op:
|
||||
batch_op.add_column(sa.Column('type', sa.String(length=20), server_default='Active', nullable=True))
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade():
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table('tenant', schema=None) as batch_op:
|
||||
batch_op.drop_column('type')
|
||||
|
||||
# ### end Alembic commands ###
|
||||
49
migrations/public/versions/25588210dab2_llm_metrics_added.py
Normal file
49
migrations/public/versions/25588210dab2_llm_metrics_added.py
Normal file
@@ -0,0 +1,49 @@
|
||||
"""LLM Metrics Added
|
||||
|
||||
Revision ID: 25588210dab2
|
||||
Revises: 083ccd8206ea
|
||||
Create Date: 2024-09-17 12:44:12.242990
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy.dialects import postgresql
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = '25588210dab2'
|
||||
down_revision = '083ccd8206ea'
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade():
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
op.create_table('llm_usage_metric',
|
||||
sa.Column('id', sa.Integer(), nullable=False),
|
||||
sa.Column('tenant_id', sa.Integer(), nullable=False),
|
||||
sa.Column('environment', sa.String(length=20), nullable=False),
|
||||
sa.Column('activity', sa.String(length=20), nullable=False),
|
||||
sa.Column('sub_activity', sa.String(length=20), nullable=False),
|
||||
sa.Column('activity_detail', sa.String(length=50), nullable=True),
|
||||
sa.Column('session_id', sa.String(length=50), nullable=True),
|
||||
sa.Column('interaction_id', sa.Integer(), nullable=True),
|
||||
sa.Column('document_version_id', sa.Integer(), nullable=True),
|
||||
sa.Column('prompt_tokens', sa.Integer(), nullable=True),
|
||||
sa.Column('completion_tokens', sa.Integer(), nullable=True),
|
||||
sa.Column('total_tokens', sa.Integer(), nullable=True),
|
||||
sa.Column('cost', sa.Float(), nullable=True),
|
||||
sa.Column('latency', sa.Float(), nullable=True),
|
||||
sa.Column('model_name', sa.String(length=50), nullable=False),
|
||||
sa.Column('timestamp', sa.DateTime(), nullable=False),
|
||||
sa.Column('additional_info', postgresql.JSONB(astext_type=sa.Text()), nullable=True),
|
||||
sa.PrimaryKeyConstraint('id'),
|
||||
schema='public'
|
||||
)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade():
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
op.drop_table('llm_usage_metric', schema='public')
|
||||
# ### end Alembic commands ###
|
||||
@@ -0,0 +1,49 @@
|
||||
"""Corrected BusinessEventLog
|
||||
|
||||
Revision ID: 2cbdb23ae02e
|
||||
Revises: e3c6ff8c22df
|
||||
Create Date: 2024-09-25 10:17:40.154566
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = '2cbdb23ae02e'
|
||||
down_revision = 'e3c6ff8c22df'
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade():
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table('business_event_log', schema=None) as batch_op:
|
||||
batch_op.alter_column('span_id',
|
||||
existing_type=sa.VARCHAR(length=50),
|
||||
nullable=True)
|
||||
batch_op.alter_column('span_name',
|
||||
existing_type=sa.VARCHAR(length=50),
|
||||
nullable=True)
|
||||
batch_op.alter_column('parent_span_id',
|
||||
existing_type=sa.VARCHAR(length=50),
|
||||
nullable=True)
|
||||
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade():
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table('business_event_log', schema=None) as batch_op:
|
||||
batch_op.alter_column('parent_span_id',
|
||||
existing_type=sa.VARCHAR(length=50),
|
||||
nullable=False)
|
||||
batch_op.alter_column('span_name',
|
||||
existing_type=sa.VARCHAR(length=50),
|
||||
nullable=False)
|
||||
batch_op.alter_column('span_id',
|
||||
existing_type=sa.VARCHAR(length=50),
|
||||
nullable=False)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
@@ -0,0 +1,38 @@
|
||||
"""session_id is uuid iso integeger
|
||||
|
||||
Revision ID: 829094f07d44
|
||||
Revises: 2cbdb23ae02e
|
||||
Create Date: 2024-09-27 09:19:13.201988
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = '829094f07d44'
|
||||
down_revision = '2cbdb23ae02e'
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade():
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table('business_event_log', schema=None) as batch_op:
|
||||
batch_op.alter_column('chat_session_id',
|
||||
existing_type=sa.INTEGER(),
|
||||
type_=sa.String(length=50),
|
||||
existing_nullable=True)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade():
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
with op.batch_alter_table('business_event_log', schema=None) as batch_op:
|
||||
batch_op.alter_column('chat_session_id',
|
||||
existing_type=sa.String(length=50),
|
||||
type_=sa.INTEGER(),
|
||||
existing_nullable=True)
|
||||
|
||||
# ### end Alembic commands ###
|
||||
@@ -0,0 +1,67 @@
|
||||
"""Updated Monitoring Setup
|
||||
|
||||
Revision ID: e3c6ff8c22df
|
||||
Revises: 25588210dab2
|
||||
Create Date: 2024-09-25 10:05:57.684506
|
||||
|
||||
"""
|
||||
from alembic import op
|
||||
import sqlalchemy as sa
|
||||
from sqlalchemy.dialects import postgresql
|
||||
|
||||
# revision identifiers, used by Alembic.
|
||||
revision = 'e3c6ff8c22df'
|
||||
down_revision = '25588210dab2'
|
||||
branch_labels = None
|
||||
depends_on = None
|
||||
|
||||
|
||||
def upgrade():
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
op.create_table('business_event_log',
|
||||
sa.Column('id', sa.Integer(), nullable=False),
|
||||
sa.Column('timestamp', sa.DateTime(), nullable=False),
|
||||
sa.Column('event_type', sa.String(length=50), nullable=False),
|
||||
sa.Column('tenant_id', sa.Integer(), nullable=False),
|
||||
sa.Column('trace_id', sa.String(length=50), nullable=False),
|
||||
sa.Column('span_id', sa.String(length=50), nullable=False),
|
||||
sa.Column('span_name', sa.String(length=50), nullable=False),
|
||||
sa.Column('parent_span_id', sa.String(length=50), nullable=False),
|
||||
sa.Column('document_version_id', sa.Integer(), nullable=True),
|
||||
sa.Column('chat_session_id', sa.Integer(), nullable=True),
|
||||
sa.Column('interaction_id', sa.Integer(), nullable=True),
|
||||
sa.Column('environment', sa.String(length=20), nullable=True),
|
||||
sa.Column('message', sa.Text(), nullable=True),
|
||||
sa.PrimaryKeyConstraint('id'),
|
||||
schema='public'
|
||||
)
|
||||
op.drop_table('llm_usage_metric')
|
||||
|
||||
# ### end Alembic commands ###
|
||||
|
||||
|
||||
def downgrade():
|
||||
# ### commands auto generated by Alembic - please adjust! ###
|
||||
|
||||
op.create_table('llm_usage_metric',
|
||||
sa.Column('id', sa.INTEGER(), autoincrement=True, nullable=False),
|
||||
sa.Column('tenant_id', sa.INTEGER(), autoincrement=False, nullable=False),
|
||||
sa.Column('environment', sa.VARCHAR(length=20), autoincrement=False, nullable=False),
|
||||
sa.Column('activity', sa.VARCHAR(length=20), autoincrement=False, nullable=False),
|
||||
sa.Column('sub_activity', sa.VARCHAR(length=20), autoincrement=False, nullable=False),
|
||||
sa.Column('activity_detail', sa.VARCHAR(length=50), autoincrement=False, nullable=True),
|
||||
sa.Column('session_id', sa.VARCHAR(length=50), autoincrement=False, nullable=True),
|
||||
sa.Column('interaction_id', sa.INTEGER(), autoincrement=False, nullable=True),
|
||||
sa.Column('document_version_id', sa.INTEGER(), autoincrement=False, nullable=True),
|
||||
sa.Column('prompt_tokens', sa.INTEGER(), autoincrement=False, nullable=True),
|
||||
sa.Column('completion_tokens', sa.INTEGER(), autoincrement=False, nullable=True),
|
||||
sa.Column('total_tokens', sa.INTEGER(), autoincrement=False, nullable=True),
|
||||
sa.Column('cost', sa.DOUBLE_PRECISION(precision=53), autoincrement=False, nullable=True),
|
||||
sa.Column('latency', sa.DOUBLE_PRECISION(precision=53), autoincrement=False, nullable=True),
|
||||
sa.Column('model_name', sa.VARCHAR(length=50), autoincrement=False, nullable=False),
|
||||
sa.Column('timestamp', postgresql.TIMESTAMP(), autoincrement=False, nullable=False),
|
||||
sa.Column('additional_info', postgresql.JSONB(astext_type=sa.Text()), autoincrement=False, nullable=True),
|
||||
sa.PrimaryKeyConstraint('id', name='llm_usage_metric_pkey')
|
||||
)
|
||||
op.drop_table('business_event_log', schema='public')
|
||||
# ### end Alembic commands ###
|
||||
@@ -159,13 +159,12 @@ http {
|
||||
}
|
||||
|
||||
location /flower/ {
|
||||
proxy_pass http://127.0.0.1:5555/;
|
||||
proxy_pass http://flower:5555/flower/;
|
||||
proxy_set_header Host $host;
|
||||
proxy_set_header X-Real-IP $remote_addr;
|
||||
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
|
||||
proxy_set_header X-Forwarded-Proto $scheme;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
include sites-enabled/*;
|
||||
|
||||
@@ -508,3 +508,34 @@ input[type="radio"] {
|
||||
overflow-x: auto;
|
||||
}
|
||||
|
||||
/* Hide Select2's custom elements */
|
||||
.select2-container-hidden {
|
||||
position: absolute !important;
|
||||
left: -9999px !important;
|
||||
}
|
||||
|
||||
.select2-dropdown-hidden {
|
||||
display: none !important;
|
||||
}
|
||||
|
||||
/* Ensure the original select is visible and styled */
|
||||
select.select2 {
|
||||
display: block !important;
|
||||
width: 100% !important;
|
||||
height: auto !important;
|
||||
padding: .375rem .75rem !important;
|
||||
font-size: 1rem !important;
|
||||
line-height: 1.5 !important;
|
||||
color: #495057 !important;
|
||||
background-color: #fff !important;
|
||||
background-clip: padding-box !important;
|
||||
border: 1px solid #ced4da !important;
|
||||
border-radius: .25rem !important;
|
||||
transition: border-color .15s ease-in-out,box-shadow .15s ease-in-out !important;
|
||||
}
|
||||
|
||||
/* Style for multiple select */
|
||||
select.select2[multiple] {
|
||||
height: auto !important;
|
||||
}
|
||||
|
||||
|
||||
0
nginx/static/css/eveai-chat-style.css
Executable file
0
nginx/static/css/eveai-chat-style.css
Executable file
0
nginx/static/js/eveai-chat-widget.js
Executable file
0
nginx/static/js/eveai-chat-widget.js
Executable file
0
nginx/static/js/eveai-sdk.js
Executable file
0
nginx/static/js/eveai-sdk.js
Executable file
@@ -1,70 +0,0 @@
|
||||
eveAI/
|
||||
│
|
||||
├── .venv/
|
||||
│
|
||||
├── common/
|
||||
│ ├── models/
|
||||
│ │ ├── __init__.py
|
||||
│ │ ├── document.py
|
||||
│ │ ├── interaction.py
|
||||
│ │ └── user.py
|
||||
│ │
|
||||
│ └── utils/
|
||||
│ ├── __init__.py
|
||||
│ └── extensions.py
|
||||
│
|
||||
├── config/
|
||||
│ ├── __init__.py
|
||||
│ ├── config.py
|
||||
│ └── logging_config.py
|
||||
│
|
||||
├── eveai_app/
|
||||
│ ├── static/
|
||||
│ ├── templates/
|
||||
│ │ ├── basic/
|
||||
│ │ ├── document/
|
||||
│ │ ├── interaction/
|
||||
│ │ ├── security/
|
||||
│ │ ├── user/
|
||||
│ │ ├── base.html
|
||||
│ │ ├── footer.html
|
||||
│ │ ├── head.html
|
||||
│ │ ├── header.html
|
||||
│ │ ├── index.html
|
||||
│ │ ├── macros.html
|
||||
│ │ ├── navbar.html
|
||||
│ │ ├── navbar_macros.html
|
||||
│ │ └── scripts.html
|
||||
│ │
|
||||
│ └── views/
|
||||
│ ├── __init__.py
|
||||
│ ├── basic_views.py
|
||||
│ ├── document_forms.py
|
||||
│ ├── document_views.py
|
||||
│ ├── errors.py
|
||||
│ ├── temp/
|
||||
│ ├── user_forms.py
|
||||
│ └── user_views.py
|
||||
│
|
||||
├── eveai_workers/
|
||||
│ ├── __init__.py
|
||||
│ ├── celery_utils.py
|
||||
│ └── tasks.py
|
||||
│
|
||||
├── instance/
|
||||
├── logs/
|
||||
│ ├── app.log
|
||||
│ ├── eveai.app.log
|
||||
│ └── eveai.workers.log
|
||||
│
|
||||
├── migrations/
|
||||
│
|
||||
├── scripts/
|
||||
│ ├── run_eveai_app.py
|
||||
│ ├── run_eveai_workers.py
|
||||
│ ├── start_eveai_app.sh
|
||||
│ ├── start_eveai_workers.sh
|
||||
│ ├── start_flower.sh
|
||||
│ └── start_logdy.sh
|
||||
│
|
||||
└── requirements.txt
|
||||
19
repopack.config.json
Normal file
19
repopack.config.json
Normal file
@@ -0,0 +1,19 @@
|
||||
{
|
||||
"output": {
|
||||
"filePath": "eveai_repo.txt",
|
||||
"style": "xml",
|
||||
"removeComments": false,
|
||||
"removeEmptyLines": false,
|
||||
"topFilesLength": 5,
|
||||
"showLineNumbers": false
|
||||
},
|
||||
"include": [],
|
||||
"ignore": {
|
||||
"useGitignore": true,
|
||||
"useDefaultPatterns": true,
|
||||
"customPatterns": []
|
||||
},
|
||||
"security": {
|
||||
"enableSecurityCheck": true
|
||||
}
|
||||
}
|
||||
@@ -26,22 +26,22 @@ greenlet~=3.0.3
|
||||
gunicorn~=22.0.0
|
||||
Jinja2~=3.1.4
|
||||
kombu~=5.3.7
|
||||
langchain~=0.2.7
|
||||
langchain-anthropic~=0.1.19
|
||||
langchain-community~=0.2.7
|
||||
langchain-core~=0.2.16
|
||||
langchain-mistralai~=0.1.9
|
||||
langchain-openai~=0.1.15
|
||||
langchain-postgres~=0.0.9
|
||||
langchain-text-splitters~=0.2.2
|
||||
langchain~=0.3.0
|
||||
langchain-anthropic~=0.2.0
|
||||
langchain-community~=0.3.0
|
||||
langchain-core~=0.3.0
|
||||
langchain-mistralai~=0.2.0
|
||||
langchain-openai~=0.2.0
|
||||
langchain-postgres~=0.0.12
|
||||
langchain-text-splitters~=0.3.0
|
||||
langcodes~=3.4.0
|
||||
langdetect~=1.0.9
|
||||
langsmith~=0.1.81
|
||||
openai~=1.35.13
|
||||
openai~=1.45.1
|
||||
pg8000~=1.31.2
|
||||
pgvector~=0.2.5
|
||||
pycryptodome~=3.20.0
|
||||
pydantic~=2.7.4
|
||||
pydantic~=2.9.1
|
||||
PyJWT~=2.8.0
|
||||
PySocks~=1.7.1
|
||||
python-dateutil~=2.9.0.post0
|
||||
@@ -53,7 +53,7 @@ pytz~=2024.1
|
||||
PyYAML~=6.0.2rc1
|
||||
redis~=5.0.4
|
||||
requests~=2.32.3
|
||||
SQLAlchemy~=2.0.31
|
||||
SQLAlchemy~=2.0.35
|
||||
tiktoken~=0.7.0
|
||||
tzdata~=2024.1
|
||||
urllib3~=2.2.2
|
||||
@@ -63,7 +63,7 @@ zxcvbn~=4.4.28
|
||||
groq~=0.9.0
|
||||
pydub~=0.25.1
|
||||
argparse~=1.4.0
|
||||
portkey_ai~=1.8.2
|
||||
portkey_ai~=1.8.7
|
||||
minio~=7.2.7
|
||||
Werkzeug~=3.0.3
|
||||
itsdangerous~=2.2.0
|
||||
@@ -74,4 +74,9 @@ pillow~=10.4.0
|
||||
pdfplumber~=0.11.4
|
||||
PyPDF2~=3.0.1
|
||||
flask-restx~=1.3.0
|
||||
|
||||
prometheus-flask-exporter~=0.23.1
|
||||
flask-healthz~=1.0.1
|
||||
langsmith~=0.1.121
|
||||
anthropic~=0.34.2
|
||||
prometheus-client~=0.20.0
|
||||
flower~=2.0.1
|
||||
|
||||
@@ -1,175 +0,0 @@
|
||||
aiohttp==3.9.5
|
||||
aiosignal==1.3.1
|
||||
alembic==1.13.1
|
||||
amqp==5.2.0
|
||||
annotated-types==0.7.0
|
||||
anyio==4.4.0
|
||||
asn1crypto==1.5.1
|
||||
attrs==23.2.0
|
||||
Babel==2.15.0
|
||||
backoff==2.2.1
|
||||
bcrypt==4.1.3
|
||||
beautifulsoup4==4.12.3
|
||||
bidict==0.23.1
|
||||
billiard==4.2.0
|
||||
blinker==1.8.2
|
||||
cachelib==0.13.0
|
||||
cachetools==5.3.3
|
||||
celery==5.4.0
|
||||
certifi==2024.6.2
|
||||
chardet==5.2.0
|
||||
charset-normalizer==3.3.2
|
||||
click==8.1.7
|
||||
click-didyoumean==0.3.1
|
||||
click-plugins==1.1.1
|
||||
click-repl==0.3.0
|
||||
colorama==0.4.6
|
||||
cors==1.0.1
|
||||
dataclasses-json==0.6.7
|
||||
deepdiff==7.0.1
|
||||
distro==1.9.0
|
||||
dnspython==2.6.1
|
||||
dominate==2.9.1
|
||||
email_validator==2.2.0
|
||||
emoji==2.12.1
|
||||
eventlet==0.36.1
|
||||
filelock==3.15.4
|
||||
filetype==1.2.0
|
||||
Flask==3.0.3
|
||||
Flask-BabelEx==0.9.4
|
||||
Flask-Bootstrap==3.3.7.1
|
||||
Flask-Cors==4.0.1
|
||||
Flask-JWT-Extended==4.6.0
|
||||
Flask-Login==0.6.3
|
||||
flask-mailman==1.1.0
|
||||
Flask-Migrate==4.0.7
|
||||
Flask-Principal==0.4.0
|
||||
Flask-Security-Too==5.4.3
|
||||
Flask-Session==0.8.0
|
||||
Flask-SocketIO==5.3.6
|
||||
Flask-SQLAlchemy==3.1.1
|
||||
Flask-WTF==1.2.1
|
||||
flower==2.0.1
|
||||
frozenlist==1.4.1
|
||||
fsspec==2024.6.0
|
||||
future==1.0.0
|
||||
gevent==24.2.1
|
||||
gevent-websocket==0.10.1
|
||||
google==3.0.0
|
||||
google-api-core==2.19.1rc0
|
||||
google-auth==2.30.0
|
||||
google-cloud-core==2.4.1
|
||||
google-cloud-kms==2.23.0
|
||||
googleapis-common-protos==1.63.2rc0
|
||||
greenlet==3.0.3
|
||||
grpc-google-iam-v1==0.13.0
|
||||
grpcio==1.63.0
|
||||
grpcio-status==1.62.2
|
||||
gunicorn==22.0.0
|
||||
h11==0.14.0
|
||||
httpcore==1.0.5
|
||||
httpx==0.27.0
|
||||
httpx-sse==0.4.0
|
||||
huggingface-hub==0.23.4
|
||||
humanize==4.9.0
|
||||
idna==3.7
|
||||
importlib_resources==6.4.0
|
||||
itsdangerous==2.2.0
|
||||
Jinja2==3.1.4
|
||||
joblib==1.4.2
|
||||
jsonpatch==1.33
|
||||
jsonpath-python==1.0.6
|
||||
jsonpointer==3.0.0
|
||||
kombu==5.3.7
|
||||
langchain==0.2.5
|
||||
langchain-community==0.2.5
|
||||
langchain-core==0.2.9
|
||||
langchain-mistralai==0.1.8
|
||||
langchain-openai==0.1.9
|
||||
langchain-postgres==0.0.9
|
||||
langchain-text-splitters==0.2.1
|
||||
langcodes==3.4.0
|
||||
langdetect==1.0.9
|
||||
langsmith==0.1.81
|
||||
language_data==1.2.0
|
||||
lxml==5.2.2
|
||||
Mako==1.3.5
|
||||
marisa-trie==1.2.0
|
||||
MarkupSafe==2.1.5
|
||||
marshmallow==3.21.3
|
||||
msgspec==0.18.6
|
||||
multidict==6.0.5
|
||||
mypy-extensions==1.0.0
|
||||
nest-asyncio==1.6.0
|
||||
nltk==3.8.1
|
||||
numpy==2.0.0
|
||||
openai==1.35.3
|
||||
ordered-set==4.1.0
|
||||
orjson==3.10.5
|
||||
packaging==24.1
|
||||
passlib==1.7.4
|
||||
pg8000==1.31.2
|
||||
pgvector==0.2.5
|
||||
prometheus_client==0.20.0
|
||||
prompt_toolkit==3.0.47
|
||||
proto-plus==1.24.0
|
||||
protobuf==5.27.1
|
||||
psycopg==3.1.19
|
||||
psycopg-pool==3.2.2
|
||||
pyasn1==0.6.0
|
||||
pyasn1_modules==0.4.0
|
||||
pycryptodome==3.20.0
|
||||
pydantic==2.7.4
|
||||
pydantic_core==2.19.0
|
||||
pydevd-pycharm==242.18071.12
|
||||
PyJWT==2.8.0
|
||||
pypdf==4.2.0
|
||||
PySocks==1.7.1
|
||||
python-dateutil==2.9.0.post0
|
||||
python-engineio==4.9.1
|
||||
python-iso639==2024.4.27
|
||||
python-magic==0.4.27
|
||||
python-socketio==5.11.3
|
||||
pytz==2024.1
|
||||
PyYAML==6.0.2rc1
|
||||
rapidfuzz==3.9.3
|
||||
redis==5.0.4
|
||||
regex==2024.4.28
|
||||
requests==2.32.3
|
||||
requests-file==2.1.0
|
||||
requests-toolbelt==1.0.0
|
||||
rsa==4.9
|
||||
scramp==1.4.5
|
||||
setuptools==69.5.1
|
||||
simple-websocket==1.0.0
|
||||
six==1.16.0
|
||||
sniffio==1.3.1
|
||||
soupsieve==2.5
|
||||
speaklater==1.3
|
||||
SQLAlchemy==2.0.31
|
||||
tabulate==0.9.0
|
||||
tenacity==8.4.2
|
||||
tiktoken==0.7.0
|
||||
tldextract==5.1.2
|
||||
tokenizers==0.19.1
|
||||
tornado==6.4.1
|
||||
tqdm==4.66.4
|
||||
typing-inspect==0.9.0
|
||||
typing_extensions==4.12.2
|
||||
tzdata==2024.1
|
||||
unstructured==0.14.8
|
||||
unstructured-client==0.23.7
|
||||
urllib3==2.2.2
|
||||
uWSGI==2.0.26
|
||||
vine==5.1.0
|
||||
visitor==0.1.3
|
||||
wcwidth==0.2.13
|
||||
Werkzeug==3.0.3
|
||||
wrapt==1.16.0
|
||||
wsproto==1.2.0
|
||||
WTForms==3.1.2
|
||||
wtforms-html5==0.6.1
|
||||
yarl==1.9.4
|
||||
zope.event==5.0
|
||||
zope.interface==6.3
|
||||
zxcvbn==4.4.28
|
||||
@@ -1,19 +0,0 @@
|
||||
Flask~=3.0.3
|
||||
WTForms~=3.1.2
|
||||
SQLAlchemy~=2.0.29
|
||||
alembic~=1.13.1
|
||||
Werkzeug~=3.0.2
|
||||
pgvector~=0.2.5
|
||||
gevent~=24.2.1
|
||||
celery~=5.4.0
|
||||
kombu~=5.3.7
|
||||
langchain~=0.1.17
|
||||
requests~=2.31.0
|
||||
beautifulsoup4~=4.12.3
|
||||
google~=3.0.0
|
||||
redis~=5.0.4
|
||||
itsdangerous~=2.2.0
|
||||
pydantic~=2.7.1
|
||||
chardet~=5.2.0
|
||||
langcodes~=3.4.0
|
||||
pytz~=2024.1
|
||||
@@ -8,7 +8,7 @@ export PYTHONPATH="$PROJECT_DIR/patched_packages:$PYTHONPATH:$PROJECT_DIR" # In
|
||||
chown -R appuser:appuser /app/logs
|
||||
|
||||
# Start a worker for the 'embeddings' queue with higher concurrency
|
||||
celery -A eveai_workers.celery worker --loglevel=info -Q embeddings --autoscale=2,8 --hostname=embeddings_worker@%h &
|
||||
celery -A eveai_workers.celery worker --loglevel=debug -Q embeddings --autoscale=2,8 --hostname=embeddings_worker@%h &
|
||||
|
||||
# Start a worker for the 'llm_interactions' queue with auto-scaling - not necessary, in eveai_chat_workers
|
||||
# celery -A eveai_workers.celery worker --loglevel=info - Q llm_interactions --autoscale=2,8 --hostname=interactions_worker@%h &
|
||||
|
||||
33
scripts/start_flower.sh
Executable file → Normal file
33
scripts/start_flower.sh
Executable file → Normal file
@@ -1,9 +1,28 @@
|
||||
#!/usr/bin/env bash
|
||||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
cd "/Volumes/OWC4M2_1/Dropbox/Josako's Dev/Josako/EveAI/Development/eveAI/" || exit 1
|
||||
source "/Volumes/OWC4M2_1/Dropbox/Josako's Dev/Josako/EveAI/Development/eveAI/.venv/bin/activate"
|
||||
# scripts/start_flower.sh
|
||||
|
||||
# on development machine, no authentication required
|
||||
export FLOWER_UNAUTHENTICATED_API=True
|
||||
# Start a worker for the 'embeddings' queue with higher concurrency
|
||||
celery -A eveai_workers.celery flower
|
||||
# Set default values
|
||||
REDIS_HOST=${REDIS_URL:-redis}
|
||||
REDIS_PORT=${REDIS_PORT:-6379}
|
||||
|
||||
# Set environment-specific variables
|
||||
if [ "$FLASK_ENV" = "production" ]; then
|
||||
# Production settings
|
||||
export FLOWER_BASIC_AUTH="${FLOWER_USER}:${FLOWER_PASSWORD}"
|
||||
export FLOWER_BROKER_URL="redis://${REDIS_USER}:${REDIS_PASS}@${REDIS_URL}:${REDIS_PORT}/0"
|
||||
export CELERY_BROKER_URL="redis://${REDIS_USER}:${REDIS_PASS}@${REDIS_URL}:${REDIS_PORT}/0"
|
||||
else
|
||||
# Development settings
|
||||
export FLOWER_BROKER_URL="redis://${REDIS_HOST}:${REDIS_PORT}/0"
|
||||
export CELERY_BROKER_URL="redis://${REDIS_HOST}:${REDIS_PORT}/0"
|
||||
fi
|
||||
|
||||
echo $BROKER_URL
|
||||
echo "----------"
|
||||
|
||||
# Start Flower
|
||||
exec celery flower \
|
||||
--url-prefix=/flower \
|
||||
--port=5555
|
||||
|
||||
Reference in New Issue
Block a user