6 Commits

Author SHA1 Message Date
Josako
883175b8f5 - Portkey log retrieval started
- flower container added (dev and prod)
2024-10-01 08:01:59 +02:00
Josako
ae697df4c9 Session_id was not correctly stored for chat sessions, and it was defined as an integer iso a UUID in the database 2024-09-27 11:24:43 +02:00
Josako
d9cb00fcdc Business event tracing completed for both eveai_workers tasks and eveai_chat_workers tasks 2024-09-27 10:53:42 +02:00
Josako
ee1b0f1cfa Start log tracing to log business events. Storage in both database and logging-backend. 2024-09-25 15:39:25 +02:00
Josako
a740c96630 - turned model_variables into a class with lazy loading
- some improvements to Healthchecks
2024-09-24 10:48:52 +02:00
Josako
67bdeac434 - Improvements and bugfixes to HealthChecks 2024-09-16 16:17:54 +02:00
43 changed files with 1283 additions and 751 deletions

View File

@@ -25,6 +25,19 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
### Security ### Security
- In case of vulnerabilities. - In case of vulnerabilities.
## [1.0.8-alfa] - 2024-09-12
### Added
- Tenant type defined to allow for active, inactive, demo ... tenants
- Search and filtering functionality on Tenants
- Implementation of health checks (1st version)
- Provision for Prometheus monitoring (no implementation yet)
- Refine audio_processor and srt_processor to reduce duplicate code and support larger files
- Introduction of repopack to reason in LLMs about the code
### Fixed
- Refine audio_processor and srt_processor to reduce duplicate code and support larger files
## [1.0.7-alfa] - 2024-09-12 ## [1.0.7-alfa] - 2024-09-12
### Added ### Added

View File

@@ -1,23 +1,31 @@
from langchain_core.retrievers import BaseRetriever from langchain_core.retrievers import BaseRetriever
from sqlalchemy import asc from sqlalchemy import asc
from sqlalchemy.exc import SQLAlchemyError from sqlalchemy.exc import SQLAlchemyError
from pydantic import BaseModel, Field from pydantic import Field, BaseModel, PrivateAttr
from typing import Any, Dict from typing import Any, Dict
from flask import current_app from flask import current_app
from common.extensions import db from common.extensions import db
from common.models.interaction import ChatSession, Interaction from common.models.interaction import ChatSession, Interaction
from common.utils.datetime_utils import get_date_in_timezone from common.utils.model_utils import ModelVariables
class EveAIHistoryRetriever(BaseRetriever): class EveAIHistoryRetriever(BaseRetriever, BaseModel):
model_variables: Dict[str, Any] = Field(...) _model_variables: ModelVariables = PrivateAttr()
session_id: str = Field(...) _session_id: str = PrivateAttr()
def __init__(self, model_variables: Dict[str, Any], session_id: str): def __init__(self, model_variables: ModelVariables, session_id: str):
super().__init__() super().__init__()
self.model_variables = model_variables self._model_variables = model_variables
self.session_id = session_id self._session_id = session_id
@property
def model_variables(self) -> ModelVariables:
return self._model_variables
@property
def session_id(self) -> str:
return self._session_id
def _get_relevant_documents(self, query: str): def _get_relevant_documents(self, query: str):
current_app.logger.debug(f'Retrieving history of interactions for query: {query}') current_app.logger.debug(f'Retrieving history of interactions for query: {query}')

View File

@@ -1,30 +1,39 @@
from langchain_core.retrievers import BaseRetriever from langchain_core.retrievers import BaseRetriever
from sqlalchemy import func, and_, or_, desc from sqlalchemy import func, and_, or_, desc
from sqlalchemy.exc import SQLAlchemyError from sqlalchemy.exc import SQLAlchemyError
from pydantic import BaseModel, Field from pydantic import BaseModel, Field, PrivateAttr
from typing import Any, Dict from typing import Any, Dict
from flask import current_app from flask import current_app
from common.extensions import db from common.extensions import db
from common.models.document import Document, DocumentVersion from common.models.document import Document, DocumentVersion
from common.utils.datetime_utils import get_date_in_timezone from common.utils.datetime_utils import get_date_in_timezone
from common.utils.model_utils import ModelVariables
class EveAIRetriever(BaseRetriever): class EveAIRetriever(BaseRetriever, BaseModel):
model_variables: Dict[str, Any] = Field(...) _model_variables: ModelVariables = PrivateAttr()
tenant_info: Dict[str, Any] = Field(...) _tenant_info: Dict[str, Any] = PrivateAttr()
def __init__(self, model_variables: Dict[str, Any], tenant_info: Dict[str, Any]): def __init__(self, model_variables: ModelVariables, tenant_info: Dict[str, Any]):
super().__init__() super().__init__()
self.model_variables = model_variables current_app.logger.debug(f'Model variables type: {type(model_variables)}')
self.tenant_info = tenant_info self._model_variables = model_variables
self._tenant_info = tenant_info
@property
def model_variables(self) -> ModelVariables:
return self._model_variables
@property
def tenant_info(self) -> Dict[str, Any]:
return self._tenant_info
def _get_relevant_documents(self, query: str): def _get_relevant_documents(self, query: str):
current_app.logger.debug(f'Retrieving relevant documents for query: {query}') current_app.logger.debug(f'Retrieving relevant documents for query: {query}')
query_embedding = self._get_query_embedding(query) query_embedding = self._get_query_embedding(query)
current_app.logger.debug(f'Model Variables Private: {type(self._model_variables)}')
current_app.logger.debug(f'Model Variables Property: {type(self.model_variables)}')
db_class = self.model_variables['embedding_db_model'] db_class = self.model_variables['embedding_db_model']
similarity_threshold = self.model_variables['similarity_threshold'] similarity_threshold = self.model_variables['similarity_threshold']
k = self.model_variables['k'] k = self.model_variables['k']

View File

@@ -0,0 +1,21 @@
from common.extensions import db
class BusinessEventLog(db.Model):
__bind_key__ = 'public'
__table_args__ = {'schema': 'public'}
id = db.Column(db.Integer, primary_key=True)
timestamp = db.Column(db.DateTime, nullable=False)
event_type = db.Column(db.String(50), nullable=False)
tenant_id = db.Column(db.Integer, nullable=False)
trace_id = db.Column(db.String(50), nullable=False)
span_id = db.Column(db.String(50))
span_name = db.Column(db.String(50))
parent_span_id = db.Column(db.String(50))
document_version_id = db.Column(db.Integer)
chat_session_id = db.Column(db.String(50))
interaction_id = db.Column(db.Integer)
environment = db.Column(db.String(20))
message = db.Column(db.Text)
# Add any other fields relevant for invoicing or warnings

View File

@@ -2,7 +2,6 @@ from common.extensions import db
from flask_security import UserMixin, RoleMixin from flask_security import UserMixin, RoleMixin
from sqlalchemy.dialects.postgresql import ARRAY from sqlalchemy.dialects.postgresql import ARRAY
import sqlalchemy as sa import sqlalchemy as sa
from sqlalchemy import CheckConstraint
class Tenant(db.Model): class Tenant(db.Model):

View File

@@ -0,0 +1,114 @@
import os
import uuid
from contextlib import contextmanager
from datetime import datetime
from typing import Dict, Any, Optional
from datetime import datetime as dt, timezone as tz
from portkey_ai import Portkey, Config
import logging
from .business_event_context import BusinessEventContext
from common.models.monitoring import BusinessEventLog
from common.extensions import db
class BusinessEvent:
# The BusinessEvent class itself is a context manager, but it doesn't use the @contextmanager decorator.
# Instead, it defines __enter__ and __exit__ methods explicitly. This is because we're doing something a bit more
# complex - we're interacting with the BusinessEventContext and the _business_event_stack.
def __init__(self, event_type: str, tenant_id: int, **kwargs):
self.event_type = event_type
self.tenant_id = tenant_id
self.trace_id = str(uuid.uuid4())
self.span_id = None
self.span_name = None
self.parent_span_id = None
self.document_version_id = kwargs.get('document_version_id')
self.chat_session_id = kwargs.get('chat_session_id')
self.interaction_id = kwargs.get('interaction_id')
self.environment = os.environ.get("FLASK_ENV", "development")
self.span_counter = 0
self.spans = []
def update_attribute(self, attribute: str, value: any):
if hasattr(self, attribute):
setattr(self, attribute, value)
else:
raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{attribute}'")
@contextmanager
def create_span(self, span_name: str):
# The create_span method is designed to be used as a context manager. We want to perform some actions when
# entering the span (like setting the span ID and name) and some actions when exiting the span (like removing
# these temporary attributes). The @contextmanager decorator allows us to write this method in a way that
# clearly separates the "entry" and "exit" logic, with the yield statement in between.
parent_span_id = self.span_id
self.span_counter += 1
new_span_id = str(uuid.uuid4())
# Save the current span info
self.spans.append((self.span_id, self.span_name, self.parent_span_id))
# Set the new span info
self.span_id = new_span_id
self.span_name = span_name
self.parent_span_id = parent_span_id
self.log(f"Starting span {span_name}")
try:
yield
finally:
self.log(f"Ending span {span_name}")
# Restore the previous span info
if self.spans:
self.span_id, self.span_name, self.parent_span_id = self.spans.pop()
else:
self.span_id = None
self.span_name = None
self.parent_span_id = None
def log(self, message: str, level: str = 'info'):
logger = logging.getLogger('business_events')
log_data = {
'event_type': self.event_type,
'tenant_id': self.tenant_id,
'trace_id': self.trace_id,
'span_id': self.span_id,
'span_name': self.span_name,
'parent_span_id': self.parent_span_id,
'document_version_id': self.document_version_id,
'chat_session_id': self.chat_session_id,
'interaction_id': self.interaction_id,
'environment': self.environment
}
# log to Graylog
getattr(logger, level)(message, extra=log_data)
# Log to database
event_log = BusinessEventLog(
timestamp=dt.now(tz=tz.utc),
event_type=self.event_type,
tenant_id=self.tenant_id,
trace_id=self.trace_id,
span_id=self.span_id,
span_name=self.span_name,
parent_span_id=self.parent_span_id,
document_version_id=self.document_version_id,
chat_session_id=self.chat_session_id,
interaction_id=self.interaction_id,
environment=self.environment,
message=message
)
db.session.add(event_log)
db.session.commit()
def __enter__(self):
self.log(f'Starting Trace for {self.event_type}')
return BusinessEventContext(self).__enter__()
def __exit__(self, exc_type, exc_val, exc_tb):
self.log(f'Ending Trace for {self.event_type}')
return BusinessEventContext(self).__exit__(exc_type, exc_val, exc_tb)

View File

@@ -0,0 +1,25 @@
from werkzeug.local import LocalProxy, LocalStack
_business_event_stack = LocalStack()
def _get_current_event():
top = _business_event_stack.top
if top is None:
raise RuntimeError("No business event context found. Are you sure you're in a business event?")
return top
current_event = LocalProxy(_get_current_event)
class BusinessEventContext:
def __init__(self, event):
self.event = event
def __enter__(self):
_business_event_stack.push(self.event)
return self.event
def __exit__(self, exc_type, exc_val, exc_tb):
_business_event_stack.pop()

View File

@@ -23,6 +23,14 @@ def cors_after_request(response, prefix):
current_app.logger.debug(f'request.args: {request.args}') current_app.logger.debug(f'request.args: {request.args}')
current_app.logger.debug(f'request is json?: {request.is_json}') current_app.logger.debug(f'request is json?: {request.is_json}')
# Exclude health checks from checks
if request.path.startswith('/healthz') or request.path.startswith('/_healthz'):
current_app.logger.debug('Skipping CORS headers for health checks')
response.headers.add('Access-Control-Allow-Origin', '*')
response.headers.add('Access-Control-Allow-Headers', '*')
response.headers.add('Access-Control-Allow-Methods', '*')
return response
tenant_id = None tenant_id = None
allowed_origins = [] allowed_origins = []

View File

@@ -5,14 +5,16 @@ from flask import current_app
from langchain_openai import OpenAIEmbeddings, ChatOpenAI from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_anthropic import ChatAnthropic from langchain_anthropic import ChatAnthropic
from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.pydantic_v1 import BaseModel, Field
from langchain.prompts import ChatPromptTemplate from typing import List, Any, Iterator
import ast from collections.abc import MutableMapping
from typing import List
from openai import OpenAI from openai import OpenAI
# from groq import Groq
from portkey_ai import createHeaders, PORTKEY_GATEWAY_URL from portkey_ai import createHeaders, PORTKEY_GATEWAY_URL
from portkey_ai.langchain.portkey_langchain_callback_handler import LangchainCallbackHandler
from common.models.document import EmbeddingSmallOpenAI, EmbeddingLargeOpenAI from common.models.document import EmbeddingSmallOpenAI, EmbeddingLargeOpenAI
from common.models.user import Tenant
from config.model_config import MODEL_CONFIG
from common.utils.business_event_context import current_event
class CitedAnswer(BaseModel): class CitedAnswer(BaseModel):
@@ -36,180 +38,264 @@ def set_language_prompt_template(cls, language_prompt):
cls.__doc__ = language_prompt cls.__doc__ = language_prompt
class ModelVariables(MutableMapping):
def __init__(self, tenant: Tenant):
self.tenant = tenant
self._variables = self._initialize_variables()
self._embedding_model = None
self._llm = None
self._llm_no_rag = None
self._transcription_client = None
self._prompt_templates = {}
self._embedding_db_model = None
def _initialize_variables(self):
variables = {}
# We initialize the variables that are available knowing the tenant. For the other, we will apply 'lazy loading'
variables['k'] = self.tenant.es_k or 5
variables['similarity_threshold'] = self.tenant.es_similarity_threshold or 0.7
variables['RAG_temperature'] = self.tenant.chat_RAG_temperature or 0.3
variables['no_RAG_temperature'] = self.tenant.chat_no_RAG_temperature or 0.5
variables['embed_tuning'] = self.tenant.embed_tuning or False
variables['rag_tuning'] = self.tenant.rag_tuning or False
variables['rag_context'] = self.tenant.rag_context or " "
# Set HTML Chunking Variables
variables['html_tags'] = self.tenant.html_tags
variables['html_end_tags'] = self.tenant.html_end_tags
variables['html_included_elements'] = self.tenant.html_included_elements
variables['html_excluded_elements'] = self.tenant.html_excluded_elements
variables['html_excluded_classes'] = self.tenant.html_excluded_classes
# Set Chunk Size variables
variables['min_chunk_size'] = self.tenant.min_chunk_size
variables['max_chunk_size'] = self.tenant.max_chunk_size
# Set model providers
variables['embedding_provider'], variables['embedding_model'] = self.tenant.embedding_model.rsplit('.', 1)
variables['llm_provider'], variables['llm_model'] = self.tenant.llm_model.rsplit('.', 1)
variables["templates"] = current_app.config['PROMPT_TEMPLATES'][(f"{variables['llm_provider']}."
f"{variables['llm_model']}")]
current_app.logger.info(f"Loaded prompt templates: \n")
current_app.logger.info(f"{variables['templates']}")
# Set model-specific configurations
model_config = MODEL_CONFIG.get(variables['llm_provider'], {}).get(variables['llm_model'], {})
variables.update(model_config)
variables['annotation_chunk_length'] = current_app.config['ANNOTATION_TEXT_CHUNK_LENGTH'][self.tenant.llm_model]
if variables['tool_calling_supported']:
variables['cited_answer_cls'] = CitedAnswer
return variables
@property
def embedding_model(self):
portkey_metadata = self.get_portkey_metadata()
portkey_headers = createHeaders(api_key=os.getenv('PORTKEY_API_KEY'),
provider=self._variables['embedding_provider'],
metadata=portkey_metadata,
trace_id=current_event.trace_id,
span_id=current_event.span_id,
span_name=current_event.span_name,
parent_span_id=current_event.parent_span_id
)
api_key = os.getenv('OPENAI_API_KEY')
model = self._variables['embedding_model']
self._embedding_model = OpenAIEmbeddings(api_key=api_key,
model=model,
base_url=PORTKEY_GATEWAY_URL,
default_headers=portkey_headers)
self._embedding_db_model = EmbeddingSmallOpenAI \
if model == 'text-embedding-3-small' \
else EmbeddingLargeOpenAI
return self._embedding_model
@property
def llm(self):
portkey_headers = self.get_portkey_headers_for_llm()
api_key = self.get_api_key_for_llm()
self._llm = ChatOpenAI(api_key=api_key,
model=self._variables['llm_model'],
temperature=self._variables['RAG_temperature'],
base_url=PORTKEY_GATEWAY_URL,
default_headers=portkey_headers)
return self._llm
@property
def llm_no_rag(self):
portkey_headers = self.get_portkey_headers_for_llm()
api_key = self.get_api_key_for_llm()
self._llm_no_rag = ChatOpenAI(api_key=api_key,
model=self._variables['llm_model'],
temperature=self._variables['RAG_temperature'],
base_url=PORTKEY_GATEWAY_URL,
default_headers=portkey_headers)
return self._llm_no_rag
def get_portkey_headers_for_llm(self):
portkey_metadata = self.get_portkey_metadata()
portkey_headers = createHeaders(api_key=os.getenv('PORTKEY_API_KEY'),
metadata=portkey_metadata,
provider=self._variables['llm_provider'],
trace_id=current_event.trace_id,
span_id=current_event.span_id,
span_name=current_event.span_name,
parent_span_id=current_event.parent_span_id
)
return portkey_headers
def get_portkey_metadata(self):
environment = os.getenv('FLASK_ENV', 'development')
portkey_metadata = {'tenant_id': str(self.tenant.id),
'environment': environment,
'trace_id': current_event.trace_id,
'span_id': current_event.span_id,
'span_name': current_event.span_name,
'parent_span_id': current_event.parent_span_id,
}
return portkey_metadata
def get_api_key_for_llm(self):
if self._variables['llm_provider'] == 'openai':
api_key = os.getenv('OPENAI_API_KEY')
else: # self._variables['llm_provider'] == 'anthropic'
api_key = os.getenv('ANTHROPIC_API_KEY')
return api_key
# def _initialize_llm(self):
#
#
# if self._variables['llm_provider'] == 'openai':
# portkey_headers = createHeaders(api_key=os.getenv('PORTKEY_API_KEY'),
# metadata=portkey_metadata,
# provider='openai')
#
# self._llm = ChatOpenAI(api_key=api_key,
# model=self._variables['llm_model'],
# temperature=self._variables['RAG_temperature'],
# base_url=PORTKEY_GATEWAY_URL,
# default_headers=portkey_headers)
# self._llm_no_rag = ChatOpenAI(api_key=api_key,
# model=self._variables['llm_model'],
# temperature=self._variables['no_RAG_temperature'],
# base_url=PORTKEY_GATEWAY_URL,
# default_headers=portkey_headers)
# self._variables['tool_calling_supported'] = self._variables['llm_model'] in ['gpt-4o', 'gpt-4o-mini']
# elif self._variables['llm_provider'] == 'anthropic':
# api_key = os.getenv('ANTHROPIC_API_KEY')
# llm_model_ext = os.getenv('ANTHROPIC_LLM_VERSIONS', {}).get(self._variables['llm_model'])
# self._llm = ChatAnthropic(api_key=api_key,
# model=llm_model_ext,
# temperature=self._variables['RAG_temperature'])
# self._llm_no_rag = ChatAnthropic(api_key=api_key,
# model=llm_model_ext,
# temperature=self._variables['RAG_temperature'])
# self._variables['tool_calling_supported'] = True
# else:
# raise ValueError(f"Invalid chat provider: {self._variables['llm_provider']}")
@property
def transcription_client(self):
environment = os.getenv('FLASK_ENV', 'development')
portkey_metadata = self.get_portkey_metadata()
portkey_headers = createHeaders(api_key=os.getenv('PORTKEY_API_KEY'),
metadata=portkey_metadata,
provider='openai',
trace_id=current_event.trace_id,
span_id=current_event.span_id,
span_name=current_event.span_name,
parent_span_id=current_event.parent_span_id
)
api_key = os.getenv('OPENAI_API_KEY')
self._transcription_client = OpenAI(api_key=api_key,
base_url=PORTKEY_GATEWAY_URL,
default_headers=portkey_headers)
self._variables['transcription_model'] = 'whisper-1'
return self._transcription_client
@property
def embedding_db_model(self):
if self._embedding_db_model is None:
self._embedding_db_model = self.get_embedding_db_model()
return self._embedding_db_model
def get_embedding_db_model(self):
current_app.logger.debug("In get_embedding_db_model")
if self._embedding_db_model is None:
self._embedding_db_model = EmbeddingSmallOpenAI \
if self._variables['embedding_model'] == 'text-embedding-3-small' \
else EmbeddingLargeOpenAI
current_app.logger.debug(f"Embedding DB Model: {self._embedding_db_model}")
return self._embedding_db_model
def get_prompt_template(self, template_name: str) -> str:
current_app.logger.info(f"Getting prompt template for {template_name}")
if template_name not in self._prompt_templates:
self._prompt_templates[template_name] = self._load_prompt_template(template_name)
return self._prompt_templates[template_name]
def _load_prompt_template(self, template_name: str) -> str:
# In the future, this method will make an API call to Portkey
# For now, we'll simulate it with a placeholder implementation
# You can replace this with your current prompt loading logic
return self._variables['templates'][template_name]
def __getitem__(self, key: str) -> Any:
current_app.logger.debug(f"ModelVariables: Getting {key}")
# Support older template names (suffix = _template)
if key.endswith('_template'):
key = key[:-len('_template')]
current_app.logger.debug(f"ModelVariables: Getting modified {key}")
if key == 'embedding_model':
return self.embedding_model
elif key == 'embedding_db_model':
return self.embedding_db_model
elif key == 'llm':
return self.llm
elif key == 'llm_no_rag':
return self.llm_no_rag
elif key == 'transcription_client':
return self.transcription_client
elif key in self._variables.get('prompt_templates', []):
return self.get_prompt_template(key)
return self._variables.get(key)
def __setitem__(self, key: str, value: Any) -> None:
self._variables[key] = value
def __delitem__(self, key: str) -> None:
del self._variables[key]
def __iter__(self) -> Iterator[str]:
return iter(self._variables)
def __len__(self):
return len(self._variables)
def get(self, key: str, default: Any = None) -> Any:
return self.__getitem__(key) or default
def update(self, **kwargs) -> None:
self._variables.update(kwargs)
def items(self):
return self._variables.items()
def keys(self):
return self._variables.keys()
def values(self):
return self._variables.values()
def select_model_variables(tenant): def select_model_variables(tenant):
embedding_provider = tenant.embedding_model.rsplit('.', 1)[0] model_variables = ModelVariables(tenant=tenant)
embedding_model = tenant.embedding_model.rsplit('.', 1)[1]
llm_provider = tenant.llm_model.rsplit('.', 1)[0]
llm_model = tenant.llm_model.rsplit('.', 1)[1]
# Set model variables
model_variables = {}
if tenant.es_k:
model_variables['k'] = tenant.es_k
else:
model_variables['k'] = 5
if tenant.es_similarity_threshold:
model_variables['similarity_threshold'] = tenant.es_similarity_threshold
else:
model_variables['similarity_threshold'] = 0.7
if tenant.chat_RAG_temperature:
model_variables['RAG_temperature'] = tenant.chat_RAG_temperature
else:
model_variables['RAG_temperature'] = 0.3
if tenant.chat_no_RAG_temperature:
model_variables['no_RAG_temperature'] = tenant.chat_no_RAG_temperature
else:
model_variables['no_RAG_temperature'] = 0.5
# Set Tuning variables
if tenant.embed_tuning:
model_variables['embed_tuning'] = tenant.embed_tuning
else:
model_variables['embed_tuning'] = False
if tenant.rag_tuning:
model_variables['rag_tuning'] = tenant.rag_tuning
else:
model_variables['rag_tuning'] = False
if tenant.rag_context:
model_variables['rag_context'] = tenant.rag_context
else:
model_variables['rag_context'] = " "
# Set HTML Chunking Variables
model_variables['html_tags'] = tenant.html_tags
model_variables['html_end_tags'] = tenant.html_end_tags
model_variables['html_included_elements'] = tenant.html_included_elements
model_variables['html_excluded_elements'] = tenant.html_excluded_elements
model_variables['html_excluded_classes'] = tenant.html_excluded_classes
# Set Chunk Size variables
model_variables['min_chunk_size'] = tenant.min_chunk_size
model_variables['max_chunk_size'] = tenant.max_chunk_size
environment = os.getenv('FLASK_ENV', 'development')
portkey_metadata = {'tenant_id': str(tenant.id), 'environment': environment}
# Set Embedding variables
match embedding_provider:
case 'openai':
portkey_headers = createHeaders(api_key=current_app.config.get('PORTKEY_API_KEY'),
provider='openai',
metadata=portkey_metadata)
match embedding_model:
case 'text-embedding-3-small':
api_key = current_app.config.get('OPENAI_API_KEY')
model_variables['embedding_model'] = OpenAIEmbeddings(api_key=api_key,
model='text-embedding-3-small',
base_url=PORTKEY_GATEWAY_URL,
default_headers=portkey_headers
)
model_variables['embedding_db_model'] = EmbeddingSmallOpenAI
case 'text-embedding-3-large':
api_key = current_app.config.get('OPENAI_API_KEY')
model_variables['embedding_model'] = OpenAIEmbeddings(api_key=api_key,
model='text-embedding-3-large',
base_url=PORTKEY_GATEWAY_URL,
default_headers=portkey_headers
)
model_variables['embedding_db_model'] = EmbeddingLargeOpenAI
case _:
raise Exception(f'Error setting model variables for tenant {tenant.id} '
f'error: Invalid embedding model')
case _:
raise Exception(f'Error setting model variables for tenant {tenant.id} '
f'error: Invalid embedding provider')
# Set Chat model variables
match llm_provider:
case 'openai':
portkey_headers = createHeaders(api_key=current_app.config.get('PORTKEY_API_KEY'),
metadata=portkey_metadata,
provider='openai')
tool_calling_supported = False
api_key = current_app.config.get('OPENAI_API_KEY')
model_variables['llm'] = ChatOpenAI(api_key=api_key,
model=llm_model,
temperature=model_variables['RAG_temperature'],
base_url=PORTKEY_GATEWAY_URL,
default_headers=portkey_headers)
model_variables['llm_no_rag'] = ChatOpenAI(api_key=api_key,
model=llm_model,
temperature=model_variables['no_RAG_temperature'],
base_url=PORTKEY_GATEWAY_URL,
default_headers=portkey_headers)
tool_calling_supported = False
match llm_model:
case 'gpt-4o' | 'gpt-4o-mini':
tool_calling_supported = True
processing_chunk_size = 10000
processing_chunk_overlap = 200
processing_min_chunk_size = 8000
processing_max_chunk_size = 12000
case _:
raise Exception(f'Error setting model variables for tenant {tenant.id} '
f'error: Invalid chat model')
case 'anthropic':
api_key = current_app.config.get('ANTHROPIC_API_KEY')
# Anthropic does not have the same 'generic' model names as OpenAI
llm_model_ext = current_app.config.get('ANTHROPIC_LLM_VERSIONS').get(llm_model)
model_variables['llm'] = ChatAnthropic(api_key=api_key,
model=llm_model_ext,
temperature=model_variables['RAG_temperature'])
model_variables['llm_no_rag'] = ChatAnthropic(api_key=api_key,
model=llm_model_ext,
temperature=model_variables['RAG_temperature'])
tool_calling_supported = True
processing_chunk_size = 10000
processing_chunk_overlap = 200
processing_min_chunk_size = 8000
processing_max_chunk_size = 12000
case _:
raise Exception(f'Error setting model variables for tenant {tenant.id} '
f'error: Invalid chat provider')
model_variables['processing_chunk_size'] = processing_chunk_size
model_variables['processing_chunk_overlap'] = processing_chunk_overlap
model_variables['processing_min_chunk_size'] = processing_min_chunk_size
model_variables['processing_max_chunk_size'] = processing_max_chunk_size
if tool_calling_supported:
model_variables['cited_answer_cls'] = CitedAnswer
templates = current_app.config['PROMPT_TEMPLATES'][f'{llm_provider}.{llm_model}']
model_variables['summary_template'] = templates['summary']
model_variables['rag_template'] = templates['rag']
model_variables['history_template'] = templates['history']
model_variables['encyclopedia_template'] = templates['encyclopedia']
model_variables['transcript_template'] = templates['transcript']
model_variables['html_parse_template'] = templates['html_parse']
model_variables['pdf_parse_template'] = templates['pdf_parse']
model_variables['annotation_chunk_length'] = current_app.config['ANNOTATION_TEXT_CHUNK_LENGTH'][tenant.llm_model]
# Transcription Client Variables.
# Using Groq
# api_key = current_app.config.get('GROQ_API_KEY')
# model_variables['transcription_client'] = Groq(api_key=api_key)
# model_variables['transcription_model'] = 'whisper-large-v3'
# Using OpenAI for transcriptions
portkey_metadata = {'tenant_id': str(tenant.id)}
portkey_headers = createHeaders(api_key=current_app.config.get('PORTKEY_API_KEY'),
metadata=portkey_metadata,
provider='openai'
)
api_key = current_app.config.get('OPENAI_API_KEY')
model_variables['transcription_client'] = OpenAI(api_key=api_key,
base_url=PORTKEY_GATEWAY_URL,
default_headers=portkey_headers)
model_variables['transcription_model'] = 'whisper-1'
return model_variables return model_variables

View File

@@ -0,0 +1,99 @@
import requests
import json
from typing import Optional
# Define a function to make the GET request
def get_metadata_grouped_data(
api_key: str,
metadata_key: str,
time_of_generation_min: Optional[str] = None,
time_of_generation_max: Optional[str] = None,
total_units_min: Optional[int] = None,
total_units_max: Optional[int] = None,
cost_min: Optional[float] = None,
cost_max: Optional[float] = None,
prompt_token_min: Optional[int] = None,
prompt_token_max: Optional[int] = None,
completion_token_min: Optional[int] = None,
completion_token_max: Optional[int] = None,
status_code: Optional[str] = None,
weighted_feedback_min: Optional[float] = None,
weighted_feedback_max: Optional[float] = None,
virtual_keys: Optional[str] = None,
configs: Optional[str] = None,
workspace_slug: Optional[str] = None,
api_key_ids: Optional[str] = None,
current_page: Optional[int] = 1,
page_size: Optional[int] = 20,
metadata: Optional[str] = None,
ai_org_model: Optional[str] = None,
trace_id: Optional[str] = None,
span_id: Optional[str] = None,
):
url = f"https://api.portkey.ai/v1/analytics/groups/metadata/{metadata_key}"
# Set up query parameters
params = {
"time_of_generation_min": time_of_generation_min,
"time_of_generation_max": time_of_generation_max,
"total_units_min": total_units_min,
"total_units_max": total_units_max,
"cost_min": cost_min,
"cost_max": cost_max,
"prompt_token_min": prompt_token_min,
"prompt_token_max": prompt_token_max,
"completion_token_min": completion_token_min,
"completion_token_max": completion_token_max,
"status_code": status_code,
"weighted_feedback_min": weighted_feedback_min,
"weighted_feedback_max": weighted_feedback_max,
"virtual_keys": virtual_keys,
"configs": configs,
"workspace_slug": workspace_slug,
"api_key_ids": api_key_ids,
"current_page": current_page,
"page_size": page_size,
"metadata": metadata,
"ai_org_model": ai_org_model,
"trace_id": trace_id,
"span_id": span_id,
}
# Remove any keys with None values
params = {k: v for k, v in params.items() if v is not None}
# Set up the headers
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
# Make the GET request
response = requests.get(url, headers=headers, params=params)
# Check for successful response
if response.status_code == 200:
return response.json() # Return JSON data
else:
response.raise_for_status() # Raise an exception for errors
# Example usage
# Replace 'your_api_key' and 'your_metadata_key' with actual values
api_key = 'your_api_key'
metadata_key = 'your_metadata_key'
try:
data = get_metadata_grouped_data(
api_key=api_key,
metadata_key=metadata_key,
time_of_generation_min="2024-08-23T15:50:23+05:30",
time_of_generation_max="2024-09-23T15:50:23+05:30",
total_units_min=100,
total_units_max=1000,
cost_min=10,
cost_max=100,
status_code="200,201"
)
print(json.dumps(data, indent=4))
except Exception as e:
print(f"Error occurred: {str(e)}")

View File

@@ -1,4 +1,4 @@
from flask import flash from flask import flash, current_app
def prepare_table(model_objects, column_names): def prepare_table(model_objects, column_names):
@@ -44,6 +44,7 @@ def form_validation_failed(request, form):
for fieldName, errorMessages in form.errors.items(): for fieldName, errorMessages in form.errors.items():
for err in errorMessages: for err in errorMessages:
flash(f"Error in {fieldName}: {err}", 'danger') flash(f"Error in {fieldName}: {err}", 'danger')
current_app.logger.debug(f"Error in {fieldName}: {err}", 'danger')
def form_to_dict(form): def form_to_dict(form):

View File

@@ -137,6 +137,12 @@ class Config(object):
MAIL_PASSWORD = environ.get('MAIL_PASSWORD') MAIL_PASSWORD = environ.get('MAIL_PASSWORD')
MAIL_DEFAULT_SENDER = ('eveAI Admin', MAIL_USERNAME) MAIL_DEFAULT_SENDER = ('eveAI Admin', MAIL_USERNAME)
# Langsmith settings
LANGCHAIN_TRACING_V2 = True
LANGCHAIN_ENDPOINT = 'https://api.smith.langchain.com'
LANGCHAIN_PROJECT = "eveai"
SUPPORTED_FILE_TYPES = ['pdf', 'html', 'md', 'txt', 'mp3', 'mp4', 'ogg', 'srt'] SUPPORTED_FILE_TYPES = ['pdf', 'html', 'md', 'txt', 'mp3', 'mp4', 'ogg', 'srt']
TENANT_TYPES = ['Active', 'Demo', 'Inactive', 'Test'] TENANT_TYPES = ['Active', 'Demo', 'Inactive', 'Test']

View File

@@ -12,7 +12,12 @@ env = os.environ.get('FLASK_ENV', 'development')
class CustomLogRecord(logging.LogRecord): class CustomLogRecord(logging.LogRecord):
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs) super().__init__(*args, **kwargs)
self.component = os.environ.get('COMPONENT_NAME', 'eveai_app') # Set default component value here self.component = os.environ.get('COMPONENT_NAME', 'eveai_app')
def __setattr__(self, name, value):
if name not in {'event_type', 'tenant_id', 'trace_id', 'span_id', 'span_name', 'parent_span_id',
'document_version_id', 'chat_session_id', 'interaction_id', 'environment'}:
super().__setattr__(name, value)
def custom_log_record_factory(*args, **kwargs): def custom_log_record_factory(*args, **kwargs):
@@ -108,6 +113,14 @@ LOGGING = {
'backupCount': 10, 'backupCount': 10,
'formatter': 'standard', 'formatter': 'standard',
}, },
'file_business_events': {
'level': 'INFO',
'class': 'logging.handlers.RotatingFileHandler',
'filename': 'logs/business_events.log',
'maxBytes': 1024 * 1024 * 5, # 5MB
'backupCount': 10,
'formatter': 'standard',
},
'console': { 'console': {
'class': 'logging.StreamHandler', 'class': 'logging.StreamHandler',
'level': 'DEBUG', 'level': 'DEBUG',
@@ -184,6 +197,11 @@ LOGGING = {
'level': 'DEBUG', 'level': 'DEBUG',
'propagate': False 'propagate': False
}, },
'business_events': {
'handlers': ['file_business_events', 'graylog'],
'level': 'DEBUG',
'propagate': False
},
'': { # root logger '': { # root logger
'handlers': ['console'], 'handlers': ['console'],
'level': 'WARNING', # Set higher level for root to minimize noise 'level': 'WARNING', # Set higher level for root to minimize noise

41
config/model_config.py Normal file
View File

@@ -0,0 +1,41 @@
MODEL_CONFIG = {
"openai": {
"gpt-4o": {
"tool_calling_supported": True,
"processing_chunk_size": 10000,
"processing_chunk_overlap": 200,
"processing_min_chunk_size": 8000,
"processing_max_chunk_size": 12000,
"prompt_templates": [
"summary", "rag", "history", "encyclopedia",
"transcript", "html_parse", "pdf_parse"
]
},
"gpt-4o-mini": {
"tool_calling_supported": True,
"processing_chunk_size": 10000,
"processing_chunk_overlap": 200,
"processing_min_chunk_size": 8000,
"processing_max_chunk_size": 12000,
"prompt_templates": [
"summary", "rag", "history", "encyclopedia",
"transcript", "html_parse", "pdf_parse"
]
},
# Add other OpenAI models here
},
"anthropic": {
"claude-3-5-sonnet": {
"tool_calling_supported": True,
"processing_chunk_size": 10000,
"processing_chunk_overlap": 200,
"processing_min_chunk_size": 8000,
"processing_max_chunk_size": 12000,
"prompt_templates": [
"summary", "rag", "history", "encyclopedia",
"transcript", "html_parse", "pdf_parse"
]
},
# Add other Anthropic models here
},
}

View File

@@ -141,7 +141,7 @@ if [ $# -eq 0 ]; then
SERVICES=() SERVICES=()
while IFS= read -r line; do while IFS= read -r line; do
SERVICES+=("$line") SERVICES+=("$line")
done < <(yq e '.services | keys | .[]' compose_dev.yaml | grep -E '^(nginx|eveai_)') done < <(yq e '.services | keys | .[]' compose_dev.yaml | grep -E '^(nginx|eveai_|flower)')
else else
SERVICES=("$@") SERVICES=("$@")
fi fi
@@ -158,7 +158,7 @@ docker buildx use eveai_builder
# Loop through services # Loop through services
for SERVICE in "${SERVICES[@]}"; do for SERVICE in "${SERVICES[@]}"; do
if [[ "$SERVICE" == "nginx" || "$SERVICE" == eveai_* ]]; then if [[ "$SERVICE" == "nginx" || "$SERVICE" == eveai_* || "$SERVICE" == "flower" ]]; then
if process_service "$SERVICE"; then if process_service "$SERVICE"; then
echo "Successfully processed $SERVICE" echo "Successfully processed $SERVICE"
else else

View File

@@ -22,6 +22,8 @@ x-common-variables: &common-variables
MAIL_PASSWORD: '$$6xsWGbNtx$$CFMQZqc*' MAIL_PASSWORD: '$$6xsWGbNtx$$CFMQZqc*'
MAIL_SERVER: mail.flow-it.net MAIL_SERVER: mail.flow-it.net
MAIL_PORT: 465 MAIL_PORT: 465
REDIS_URL: redis
REDIS_PORT: '6379'
OPENAI_API_KEY: 'sk-proj-8R0jWzwjL7PeoPyMhJTZT3BlbkFJLb6HfRB2Hr9cEVFWEhU7' OPENAI_API_KEY: 'sk-proj-8R0jWzwjL7PeoPyMhJTZT3BlbkFJLb6HfRB2Hr9cEVFWEhU7'
GROQ_API_KEY: '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' GROQ_API_KEY: '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'
ANTHROPIC_API_KEY: 'sk-ant-api03-c2TmkzbReeGhXBO5JxNH6BJNylRDonc9GmZd0eRbrvyekec2' ANTHROPIC_API_KEY: 'sk-ant-api03-c2TmkzbReeGhXBO5JxNH6BJNylRDonc9GmZd0eRbrvyekec2'
@@ -32,6 +34,7 @@ x-common-variables: &common-variables
MINIO_ACCESS_KEY: minioadmin MINIO_ACCESS_KEY: minioadmin
MINIO_SECRET_KEY: minioadmin MINIO_SECRET_KEY: minioadmin
NGINX_SERVER_NAME: 'localhost http://macstudio.ask-eve-ai-local.com/' NGINX_SERVER_NAME: 'localhost http://macstudio.ask-eve-ai-local.com/'
LANGCHAIN_API_KEY: "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"
networks: networks:
@@ -264,6 +267,22 @@ services:
networks: networks:
- eveai-network - eveai-network
flower:
image: josakola/flower:latest
build:
context: ..
dockerfile: ./docker/flower/Dockerfile
environment:
<<: *common-variables
volumes:
- ../scripts:/app/scripts
ports:
- "5555:5555"
depends_on:
- redis
networks:
- eveai-network
minio: minio:
image: minio/minio image: minio/minio
ports: ports:

View File

@@ -21,11 +21,13 @@ x-common-variables: &common-variables
MAIL_USERNAME: 'evie_admin@askeveai.com' MAIL_USERNAME: 'evie_admin@askeveai.com'
MAIL_PASSWORD: 's5D%R#y^v!s&6Z^i0k&' MAIL_PASSWORD: 's5D%R#y^v!s&6Z^i0k&'
MAIL_SERVER: mail.askeveai.com MAIL_SERVER: mail.askeveai.com
MAIL_PORT: 465 MAIL_PORT: '465'
REDIS_USER: eveai REDIS_USER: eveai
REDIS_PASS: 'jHliZwGD36sONgbm0fc6SOpzLbknqq4RNF8K' REDIS_PASS: 'jHliZwGD36sONgbm0fc6SOpzLbknqq4RNF8K'
REDIS_URL: 8bciqc.stackhero-network.com REDIS_URL: 8bciqc.stackhero-network.com
REDIS_PORT: '9961' REDIS_PORT: '9961'
FLOWER_USER: 'Felucia'
FLOWER_PASSWORD: 'Jungles'
OPENAI_API_KEY: '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' OPENAI_API_KEY: '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'
GROQ_API_KEY: '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' GROQ_API_KEY: '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'
ANTHROPIC_API_KEY: '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' ANTHROPIC_API_KEY: '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'
@@ -38,6 +40,7 @@ x-common-variables: &common-variables
MINIO_ACCESS_KEY: 04JKmQln8PQpyTmMiCPc MINIO_ACCESS_KEY: 04JKmQln8PQpyTmMiCPc
MINIO_SECRET_KEY: 2PEZAD1nlpAmOyDV0TUTuJTQw1qVuYLF3A7GMs0D MINIO_SECRET_KEY: 2PEZAD1nlpAmOyDV0TUTuJTQw1qVuYLF3A7GMs0D
NGINX_SERVER_NAME: 'evie.askeveai.com mxz536.stackhero-network.com' NGINX_SERVER_NAME: 'evie.askeveai.com mxz536.stackhero-network.com'
LANGCHAIN_API_KEY: "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"
networks: networks:
eveai-network: eveai-network:
@@ -53,10 +56,6 @@ services:
environment: environment:
<<: *common-variables <<: *common-variables
volumes: volumes:
# - ../nginx:/etc/nginx
# - ../nginx/sites-enabled:/etc/nginx/sites-enabled
# - ../nginx/static:/etc/nginx/static
# - ../nginx/public:/etc/nginx/public
- eveai_logs:/var/log/nginx - eveai_logs:/var/log/nginx
labels: labels:
- "traefik.enable=true" - "traefik.enable=true"
@@ -81,7 +80,7 @@ services:
volumes: volumes:
- eveai_logs:/app/logs - eveai_logs:/app/logs
healthcheck: healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:5001/health"] test: ["CMD", "curl", "-f", "http://localhost:5001/healthz/ready"]
interval: 10s interval: 10s
timeout: 5s timeout: 5s
retries: 5 retries: 5
@@ -91,18 +90,11 @@ services:
eveai_workers: eveai_workers:
platform: linux/amd64 platform: linux/amd64
image: josakola/eveai_workers:latest image: josakola/eveai_workers:latest
# ports:
# - 5001:5001
environment: environment:
<<: *common-variables <<: *common-variables
COMPONENT_NAME: eveai_workers COMPONENT_NAME: eveai_workers
volumes: volumes:
- eveai_logs:/app/logs - eveai_logs:/app/logs
# healthcheck:
# test: [ "CMD", "curl", "-f", "http://localhost:5001/health" ]
# interval: 10s
# timeout: 5s
# retries: 5
networks: networks:
- eveai-network - eveai-network
@@ -117,7 +109,7 @@ services:
volumes: volumes:
- eveai_logs:/app/logs - eveai_logs:/app/logs
healthcheck: healthcheck:
test: [ "CMD", "curl", "-f", "http://localhost:5002/health" ] # Adjust based on your health endpoint test: [ "CMD", "curl", "-f", "http://localhost:5002/healthz/ready" ] # Adjust based on your health endpoint
interval: 10s interval: 10s
timeout: 5s timeout: 5s
retries: 5 retries: 5
@@ -127,18 +119,11 @@ services:
eveai_chat_workers: eveai_chat_workers:
platform: linux/amd64 platform: linux/amd64
image: josakola/eveai_chat_workers:latest image: josakola/eveai_chat_workers:latest
# ports:
# - 5001:5001
environment: environment:
<<: *common-variables <<: *common-variables
COMPONENT_NAME: eveai_chat_workers COMPONENT_NAME: eveai_chat_workers
volumes: volumes:
- eveai_logs:/app/logs - eveai_logs:/app/logs
# healthcheck:
# test: [ "CMD", "curl", "-f", "http://localhost:5001/health" ]
# interval: 10s
# timeout: 5s
# retries: 5
networks: networks:
- eveai-network - eveai-network
@@ -153,20 +138,23 @@ services:
volumes: volumes:
- eveai_logs:/app/logs - eveai_logs:/app/logs
healthcheck: healthcheck:
test: [ "CMD", "curl", "-f", "http://localhost:5001/health" ] test: [ "CMD", "curl", "-f", "http://localhost:5003/healthz/ready" ]
interval: 10s interval: 10s
timeout: 5s timeout: 5s
retries: 5 retries: 5
networks: networks:
- eveai-network - eveai-network
flower:
image: josakola/flower:latest
environment:
<<: *common-variables
ports:
- "5555:5555"
networks:
- eveai-network
volumes: volumes:
eveai_logs: eveai_logs:
# miniAre theo_data:
# db-data:
# redis-data:
# tenant-files:
#secrets:
# db-password:
# file: ./db/password.txt

View File

@@ -34,6 +34,7 @@ RUN apt-get update && apt-get install -y \
build-essential \ build-essential \
gcc \ gcc \
postgresql-client \ postgresql-client \
curl \
&& apt-get clean \ && apt-get clean \
&& rm -rf /var/lib/apt/lists/* && rm -rf /var/lib/apt/lists/*

View File

@@ -34,6 +34,7 @@ RUN apt-get update && apt-get install -y \
build-essential \ build-essential \
gcc \ gcc \
postgresql-client \ postgresql-client \
curl \
&& apt-get clean \ && apt-get clean \
&& rm -rf /var/lib/apt/lists/* && rm -rf /var/lib/apt/lists/*

View File

@@ -34,6 +34,7 @@ RUN apt-get update && apt-get install -y \
build-essential \ build-essential \
gcc \ gcc \
postgresql-client \ postgresql-client \
curl \
&& apt-get clean \ && apt-get clean \
&& rm -rf /var/lib/apt/lists/* && rm -rf /var/lib/apt/lists/*

34
docker/flower/Dockerfile Normal file
View File

@@ -0,0 +1,34 @@
ARG PYTHON_VERSION=3.12.3
FROM python:${PYTHON_VERSION}-slim as base
ENV PYTHONDONTWRITEBYTECODE=1
ENV PYTHONUNBUFFERED=1
WORKDIR /app
ARG UID=10001
RUN adduser \
--disabled-password \
--gecos "" \
--home "/nonexistent" \
--shell "/bin/bash" \
--no-create-home \
--uid "${UID}" \
appuser
RUN apt-get update && apt-get install -y \
build-essential \
gcc \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
COPY requirements.txt /app/
RUN pip install --no-cache-dir -r requirements.txt
COPY . /app
COPY scripts/start_flower.sh /app/start_flower.sh
RUN chmod a+x /app/start_flower.sh
USER appuser
CMD ["/app/start_flower.sh"]

View File

@@ -76,20 +76,24 @@ def create_app(config_file=None):
app.logger.debug('Token request detected, skipping JWT verification') app.logger.debug('Token request detected, skipping JWT verification')
return return
try: # Check if this a health check request
verify_jwt_in_request(optional=True) if request.path.startswith('/_healthz') or request.path.startswith('/healthz'):
tenant_id = get_jwt_identity() app.logger.debug('Health check request detected, skipping JWT verification')
app.logger.debug(f'Tenant ID from JWT: {tenant_id}') else:
try:
verify_jwt_in_request(optional=True)
tenant_id = get_jwt_identity()
app.logger.debug(f'Tenant ID from JWT: {tenant_id}')
if tenant_id: if tenant_id:
Database(tenant_id).switch_schema() Database(tenant_id).switch_schema()
app.logger.debug(f'Switched to schema for tenant {tenant_id}') app.logger.debug(f'Switched to schema for tenant {tenant_id}')
else: else:
app.logger.debug('No tenant ID found in JWT') app.logger.debug('No tenant ID found in JWT')
except Exception as e: except Exception as e:
app.logger.error(f'Error in before_request: {str(e)}') app.logger.error(f'Error in before_request: {str(e)}')
# Don't raise the exception here, let the request continue # Don't raise the exception here, let the request continue
# The appropriate error handling will be done in the specific endpoints # The appropriate error handling will be done in the specific endpoints
return app return app

View File

@@ -24,7 +24,7 @@ def liveness():
def readiness(): def readiness():
checks = { checks = {
"database": check_database(), "database": check_database(),
"celery": check_celery(), # "celery": check_celery(),
"minio": check_minio(), "minio": check_minio(),
# Add more checks as needed # Add more checks as needed
} }

View File

@@ -10,6 +10,8 @@ from common.extensions import (db, migrate, bootstrap, security, mail, login_man
minio_client, simple_encryption, metrics) minio_client, simple_encryption, metrics)
from common.models.user import User, Role, Tenant, TenantDomain from common.models.user import User, Role, Tenant, TenantDomain
import common.models.interaction import common.models.interaction
import common.models.monitoring
import common.models.document
from common.utils.nginx_utils import prefixed_url_for from common.utils.nginx_utils import prefixed_url_for
from config.logging_config import LOGGING from config.logging_config import LOGGING
from common.utils.security import set_tenant_session_data from common.utils.security import set_tenant_session_data

View File

@@ -48,7 +48,7 @@ def check_database():
def check_celery(): def check_celery():
try: try:
# Send a simple task to Celery # Send a simple task to Celery
result = current_celery.send_task('tasks.ping', queue='embeddings') result = current_celery.send_task('ping', queue='embeddings')
response = result.get(timeout=10) # Wait for up to 10 seconds for a response response = result.get(timeout=10) # Wait for up to 10 seconds for a response
return response == 'pong' return response == 'pong'
except CeleryTimeoutError: except CeleryTimeoutError:

View File

@@ -67,7 +67,7 @@ class TenantForm(FlaskForm):
# Initialize fallback algorithms # Initialize fallback algorithms
self.fallback_algorithms.choices = \ self.fallback_algorithms.choices = \
[(algorithm, algorithm.lower()) for algorithm in current_app.config['FALLBACK_ALGORITHMS']] [(algorithm, algorithm.lower()) for algorithm in current_app.config['FALLBACK_ALGORITHMS']]
self.type.choices = [('', 'Select Type')] + [(t, t) for t in current_app.config['TENANT_TYPES']] self.type.choices = [(t, t) for t in current_app.config['TENANT_TYPES']]
class BaseUserForm(FlaskForm): class BaseUserForm(FlaskForm):

View File

@@ -129,6 +129,7 @@ def edit_tenant(tenant_id):
form.html_excluded_classes.data = ', '.join(tenant.html_excluded_classes) form.html_excluded_classes.data = ', '.join(tenant.html_excluded_classes)
if form.validate_on_submit(): if form.validate_on_submit():
current_app.logger.debug(f'Updating tenant {tenant_id}')
# Populate the tenant with form data # Populate the tenant with form data
form.populate_obj(tenant) form.populate_obj(tenant)
# Then handle the special fields manually # Then handle the special fields manually
@@ -148,6 +149,7 @@ def edit_tenant(tenant_id):
session['tenant'] = tenant.to_dict() session['tenant'] = tenant.to_dict()
# return redirect(url_for(f"user/tenant/tenant_id")) # return redirect(url_for(f"user/tenant/tenant_id"))
else: else:
current_app.logger.debug(f'Tenant update failed with errors: {form.errors}')
form_validation_failed(request, form) form_validation_failed(request, form)
return render_template('user/edit_tenant.html', form=form, tenant_id=tenant_id) return render_template('user/edit_tenant.html', form=form, tenant_id=tenant_id)

View File

@@ -60,7 +60,6 @@ def register_extensions(app):
session.init_app(app) session.init_app(app)
def register_blueprints(app): def register_blueprints(app):
from views.healthz_views import healthz_bp from views.healthz_views import healthz_bp
app.register_blueprint(healthz_bp) app.register_blueprint(healthz_bp)

View File

@@ -41,7 +41,7 @@ def check_database():
def check_celery(): def check_celery():
try: try:
# Send a simple task to Celery # Send a simple task to Celery
result = current_celery.send_task('tasks.ping', queue='llm_interactions') result = current_celery.send_task('ping', queue='llm_interactions')
response = result.get(timeout=10) # Wait for up to 10 seconds for a response response = result.get(timeout=10) # Wait for up to 10 seconds for a response
return response == 'pong' return response == 'pong'
except CeleryTimeoutError: except CeleryTimeoutError:

View File

@@ -22,8 +22,10 @@ from common.models.interaction import ChatSession, Interaction, InteractionEmbed
from common.extensions import db from common.extensions import db
from common.utils.celery_utils import current_celery from common.utils.celery_utils import current_celery
from common.utils.model_utils import select_model_variables, create_language_template, replace_variable_in_template from common.utils.model_utils import select_model_variables, create_language_template, replace_variable_in_template
from common.langchain.EveAIRetriever import EveAIRetriever from common.langchain.eveai_retriever import EveAIRetriever
from common.langchain.EveAIHistoryRetriever import EveAIHistoryRetriever from common.langchain.eveai_history_retriever import EveAIHistoryRetriever
from common.utils.business_event import BusinessEvent
from common.utils.business_event_context import current_event
# Healthcheck task # Healthcheck task
@@ -33,7 +35,10 @@ def ping():
def detail_question(question, language, model_variables, session_id): def detail_question(question, language, model_variables, session_id):
retriever = EveAIHistoryRetriever(model_variables, session_id) current_app.logger.debug(f'Detail question: {question}')
current_app.logger.debug(f'model_varialbes: {model_variables}')
current_app.logger.debug(f'session_id: {session_id}')
retriever = EveAIHistoryRetriever(model_variables=model_variables, session_id=session_id)
llm = model_variables['llm'] llm = model_variables['llm']
template = model_variables['history_template'] template = model_variables['history_template']
language_template = create_language_template(template, language) language_template = create_language_template(template, language)
@@ -62,53 +67,56 @@ def ask_question(tenant_id, question, language, session_id, user_timezone, room)
'interaction_id': 'interaction_id_value' 'interaction_id': 'interaction_id_value'
} }
""" """
current_app.logger.info(f'ask_question: Received question for tenant {tenant_id}: {question}. Processing...') with BusinessEvent("Ask Question", tenant_id=tenant_id, chat_session_id=session_id):
current_app.logger.info(f'ask_question: Received question for tenant {tenant_id}: {question}. Processing...')
try: try:
# Retrieve the tenant # Retrieve the tenant
tenant = Tenant.query.get(tenant_id) tenant = Tenant.query.get(tenant_id)
if not tenant: if not tenant:
raise Exception(f'Tenant {tenant_id} not found.') raise Exception(f'Tenant {tenant_id} not found.')
# Ensure we are working in the correct database schema # Ensure we are working in the correct database schema
Database(tenant_id).switch_schema() Database(tenant_id).switch_schema()
# Ensure we have a session to story history # Ensure we have a session to story history
chat_session = ChatSession.query.filter_by(session_id=session_id).first() chat_session = ChatSession.query.filter_by(session_id=session_id).first()
if not chat_session: if not chat_session:
try: try:
chat_session = ChatSession() chat_session = ChatSession()
chat_session.session_id = session_id chat_session.session_id = session_id
chat_session.session_start = dt.now(tz.utc) chat_session.session_start = dt.now(tz.utc)
chat_session.timezone = user_timezone chat_session.timezone = user_timezone
db.session.add(chat_session) db.session.add(chat_session)
db.session.commit() db.session.commit()
except SQLAlchemyError as e: except SQLAlchemyError as e:
current_app.logger.error(f'ask_question: Error initializing chat session in database: {e}') current_app.logger.error(f'ask_question: Error initializing chat session in database: {e}')
raise raise
if tenant.rag_tuning: if tenant.rag_tuning:
current_app.rag_tuning_logger.debug(f'Received question for tenant {tenant_id}:\n{question}. Processing...') current_app.rag_tuning_logger.debug(f'Received question for tenant {tenant_id}:\n{question}. Processing...')
current_app.rag_tuning_logger.debug(f'Tenant Information: \n{tenant.to_dict()}') current_app.rag_tuning_logger.debug(f'Tenant Information: \n{tenant.to_dict()}')
current_app.rag_tuning_logger.debug(f'===================================================================') current_app.rag_tuning_logger.debug(f'===================================================================')
current_app.rag_tuning_logger.debug(f'===================================================================') current_app.rag_tuning_logger.debug(f'===================================================================')
result, interaction = answer_using_tenant_rag(question, language, tenant, chat_session) with current_event.create_span("RAG Answer"):
result['algorithm'] = current_app.config['INTERACTION_ALGORITHMS']['RAG_TENANT']['name'] result, interaction = answer_using_tenant_rag(question, language, tenant, chat_session)
result['interaction_id'] = interaction.id result['algorithm'] = current_app.config['INTERACTION_ALGORITHMS']['RAG_TENANT']['name']
result['room'] = room # Include the room in the result
if result['insufficient_info']:
if 'LLM' in tenant.fallback_algorithms:
result, interaction = answer_using_llm(question, language, tenant, chat_session)
result['algorithm'] = current_app.config['INTERACTION_ALGORITHMS']['LLM']['name']
result['interaction_id'] = interaction.id result['interaction_id'] = interaction.id
result['room'] = room # Include the room in the result result['room'] = room # Include the room in the result
return result if result['insufficient_info']:
except Exception as e: if 'LLM' in tenant.fallback_algorithms:
current_app.logger.error(f'ask_question: Error processing question: {e}') with current_event.create_span("Fallback Algorithm LLM"):
raise result, interaction = answer_using_llm(question, language, tenant, chat_session)
result['algorithm'] = current_app.config['INTERACTION_ALGORITHMS']['LLM']['name']
result['interaction_id'] = interaction.id
result['room'] = room # Include the room in the result
return result
except Exception as e:
current_app.logger.error(f'ask_question: Error processing question: {e}')
raise
def answer_using_tenant_rag(question, language, tenant, chat_session): def answer_using_tenant_rag(question, language, tenant, chat_session):
@@ -128,92 +136,94 @@ def answer_using_tenant_rag(question, language, tenant, chat_session):
# Langchain debugging if required # Langchain debugging if required
# set_debug(True) # set_debug(True)
detailed_question = detail_question(question, language, model_variables, chat_session.session_id) with current_event.create_span("Detail Question"):
current_app.logger.debug(f'Original question:\n {question}\n\nDetailed question: {detailed_question}') detailed_question = detail_question(question, language, model_variables, chat_session.session_id)
if tenant.rag_tuning: current_app.logger.debug(f'Original question:\n {question}\n\nDetailed question: {detailed_question}')
current_app.rag_tuning_logger.debug(f'Detailed Question for tenant {tenant.id}:\n{question}.')
current_app.rag_tuning_logger.debug(f'-------------------------------------------------------------------')
new_interaction.detailed_question = detailed_question
new_interaction.detailed_question_at = dt.now(tz.utc)
retriever = EveAIRetriever(model_variables, tenant_info)
llm = model_variables['llm']
template = model_variables['rag_template']
language_template = create_language_template(template, language)
full_template = replace_variable_in_template(language_template, "{tenant_context}", model_variables['rag_context'])
rag_prompt = ChatPromptTemplate.from_template(full_template)
setup_and_retrieval = RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
if tenant.rag_tuning:
current_app.rag_tuning_logger.debug(f'Full prompt for tenant {tenant.id}:\n{full_template}.')
current_app.rag_tuning_logger.debug(f'-------------------------------------------------------------------')
new_interaction_embeddings = []
if not model_variables['cited_answer_cls']: # The model doesn't support structured feedback
output_parser = StrOutputParser()
chain = setup_and_retrieval | rag_prompt | llm | output_parser
# Invoke the chain with the actual question
answer = chain.invoke(detailed_question)
new_interaction.answer = answer
result = {
'answer': answer,
'citations': [],
'insufficient_info': False
}
else: # The model supports structured feedback
structured_llm = llm.with_structured_output(model_variables['cited_answer_cls'])
chain = setup_and_retrieval | rag_prompt | structured_llm
result = chain.invoke(detailed_question).dict()
current_app.logger.debug(f'ask_question: result answer: {result['answer']}')
current_app.logger.debug(f'ask_question: result citations: {result["citations"]}')
current_app.logger.debug(f'ask_question: insufficient information: {result["insufficient_info"]}')
if tenant.rag_tuning: if tenant.rag_tuning:
current_app.rag_tuning_logger.debug(f'ask_question: result answer: {result['answer']}') current_app.rag_tuning_logger.debug(f'Detailed Question for tenant {tenant.id}:\n{question}.')
current_app.rag_tuning_logger.debug(f'ask_question: result citations: {result["citations"]}')
current_app.rag_tuning_logger.debug(f'ask_question: insufficient information: {result["insufficient_info"]}')
current_app.rag_tuning_logger.debug(f'-------------------------------------------------------------------') current_app.rag_tuning_logger.debug(f'-------------------------------------------------------------------')
new_interaction.answer = result['answer'] new_interaction.detailed_question = detailed_question
new_interaction.detailed_question_at = dt.now(tz.utc)
# Filter out the existing Embedding IDs with current_event.create_span("Generate Answer using RAG"):
given_embedding_ids = [int(emb_id) for emb_id in result['citations']] retriever = EveAIRetriever(model_variables, tenant_info)
embeddings = ( llm = model_variables['llm']
db.session.query(Embedding) template = model_variables['rag_template']
.filter(Embedding.id.in_(given_embedding_ids)) language_template = create_language_template(template, language)
.all() full_template = replace_variable_in_template(language_template, "{tenant_context}", model_variables['rag_context'])
) rag_prompt = ChatPromptTemplate.from_template(full_template)
existing_embedding_ids = [emb.id for emb in embeddings] setup_and_retrieval = RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
urls = list(set(emb.document_version.url for emb in embeddings))
if tenant.rag_tuning: if tenant.rag_tuning:
current_app.rag_tuning_logger.debug(f'Referenced documents for answer for tenant {tenant.id}:\n') current_app.rag_tuning_logger.debug(f'Full prompt for tenant {tenant.id}:\n{full_template}.')
current_app.rag_tuning_logger.debug(f'{urls}')
current_app.rag_tuning_logger.debug(f'-------------------------------------------------------------------') current_app.rag_tuning_logger.debug(f'-------------------------------------------------------------------')
for emb_id in existing_embedding_ids: new_interaction_embeddings = []
new_interaction_embedding = InteractionEmbedding(embedding_id=emb_id) if not model_variables['cited_answer_cls']: # The model doesn't support structured feedback
new_interaction_embedding.interaction = new_interaction output_parser = StrOutputParser()
new_interaction_embeddings.append(new_interaction_embedding)
result['citations'] = urls chain = setup_and_retrieval | rag_prompt | llm | output_parser
# Disable langchain debugging if set above. # Invoke the chain with the actual question
# set_debug(False) answer = chain.invoke(detailed_question)
new_interaction.answer = answer
result = {
'answer': answer,
'citations': [],
'insufficient_info': False
}
new_interaction.answer_at = dt.now(tz.utc) else: # The model supports structured feedback
chat_session.session_end = dt.now(tz.utc) structured_llm = llm.with_structured_output(model_variables['cited_answer_cls'])
try: chain = setup_and_retrieval | rag_prompt | structured_llm
db.session.add(chat_session)
db.session.add(new_interaction) result = chain.invoke(detailed_question).dict()
db.session.add_all(new_interaction_embeddings) current_app.logger.debug(f'ask_question: result answer: {result['answer']}')
db.session.commit() current_app.logger.debug(f'ask_question: result citations: {result["citations"]}')
return result, new_interaction current_app.logger.debug(f'ask_question: insufficient information: {result["insufficient_info"]}')
except SQLAlchemyError as e: if tenant.rag_tuning:
current_app.logger.error(f'ask_question: Error saving interaction to database: {e}') current_app.rag_tuning_logger.debug(f'ask_question: result answer: {result['answer']}')
raise current_app.rag_tuning_logger.debug(f'ask_question: result citations: {result["citations"]}')
current_app.rag_tuning_logger.debug(f'ask_question: insufficient information: {result["insufficient_info"]}')
current_app.rag_tuning_logger.debug(f'-------------------------------------------------------------------')
new_interaction.answer = result['answer']
# Filter out the existing Embedding IDs
given_embedding_ids = [int(emb_id) for emb_id in result['citations']]
embeddings = (
db.session.query(Embedding)
.filter(Embedding.id.in_(given_embedding_ids))
.all()
)
existing_embedding_ids = [emb.id for emb in embeddings]
urls = list(set(emb.document_version.url for emb in embeddings))
if tenant.rag_tuning:
current_app.rag_tuning_logger.debug(f'Referenced documents for answer for tenant {tenant.id}:\n')
current_app.rag_tuning_logger.debug(f'{urls}')
current_app.rag_tuning_logger.debug(f'-------------------------------------------------------------------')
for emb_id in existing_embedding_ids:
new_interaction_embedding = InteractionEmbedding(embedding_id=emb_id)
new_interaction_embedding.interaction = new_interaction
new_interaction_embeddings.append(new_interaction_embedding)
result['citations'] = urls
# Disable langchain debugging if set above.
# set_debug(False)
new_interaction.answer_at = dt.now(tz.utc)
chat_session.session_end = dt.now(tz.utc)
try:
db.session.add(chat_session)
db.session.add(new_interaction)
db.session.add_all(new_interaction_embeddings)
db.session.commit()
return result, new_interaction
except SQLAlchemyError as e:
current_app.logger.error(f'ask_question: Error saving interaction to database: {e}')
raise
def answer_using_llm(question, language, tenant, chat_session): def answer_using_llm(question, language, tenant, chat_session):
@@ -233,47 +243,49 @@ def answer_using_llm(question, language, tenant, chat_session):
# Langchain debugging if required # Langchain debugging if required
# set_debug(True) # set_debug(True)
detailed_question = detail_question(question, language, model_variables, chat_session.session_id) with current_event.create_span("Detail Question"):
current_app.logger.debug(f'Original question:\n {question}\n\nDetailed question: {detailed_question}') detailed_question = detail_question(question, language, model_variables, chat_session.session_id)
new_interaction.detailed_question = detailed_question current_app.logger.debug(f'Original question:\n {question}\n\nDetailed question: {detailed_question}')
new_interaction.detailed_question_at = dt.now(tz.utc) new_interaction.detailed_question = detailed_question
new_interaction.detailed_question_at = dt.now(tz.utc)
retriever = EveAIRetriever(model_variables, tenant_info) with current_event.create_span("Detail Answer using LLM"):
llm = model_variables['llm_no_rag'] retriever = EveAIRetriever(model_variables, tenant_info)
template = model_variables['encyclopedia_template'] llm = model_variables['llm_no_rag']
language_template = create_language_template(template, language) template = model_variables['encyclopedia_template']
rag_prompt = ChatPromptTemplate.from_template(language_template) language_template = create_language_template(template, language)
setup = RunnablePassthrough() rag_prompt = ChatPromptTemplate.from_template(language_template)
output_parser = StrOutputParser() setup = RunnablePassthrough()
output_parser = StrOutputParser()
new_interaction_embeddings = [] new_interaction_embeddings = []
chain = setup | rag_prompt | llm | output_parser chain = setup | rag_prompt | llm | output_parser
input_question = {"question": detailed_question} input_question = {"question": detailed_question}
# Invoke the chain with the actual question # Invoke the chain with the actual question
answer = chain.invoke(input_question) answer = chain.invoke(input_question)
new_interaction.answer = answer new_interaction.answer = answer
result = { result = {
'answer': answer, 'answer': answer,
'citations': [], 'citations': [],
'insufficient_info': False 'insufficient_info': False
} }
# Disable langchain debugging if set above. # Disable langchain debugging if set above.
# set_debug(False) # set_debug(False)
new_interaction.answer_at = dt.now(tz.utc) new_interaction.answer_at = dt.now(tz.utc)
chat_session.session_end = dt.now(tz.utc) chat_session.session_end = dt.now(tz.utc)
try: try:
db.session.add(chat_session) db.session.add(chat_session)
db.session.add(new_interaction) db.session.add(new_interaction)
db.session.commit() db.session.commit()
return result, new_interaction return result, new_interaction
except SQLAlchemyError as e: except SQLAlchemyError as e:
current_app.logger.error(f'ask_question: Error saving interaction to database: {e}') current_app.logger.error(f'ask_question: Error saving interaction to database: {e}')
raise raise
def tasks_ping(): def tasks_ping():

View File

@@ -7,6 +7,7 @@ from common.extensions import minio_client
import subprocess import subprocess
from .transcription_processor import TranscriptionProcessor from .transcription_processor import TranscriptionProcessor
from common.utils.business_event_context import current_event
class AudioProcessor(TranscriptionProcessor): class AudioProcessor(TranscriptionProcessor):
@@ -24,8 +25,13 @@ class AudioProcessor(TranscriptionProcessor):
self.document_version.id, self.document_version.id,
self.document_version.file_name self.document_version.file_name
) )
compressed_audio = self._compress_audio(file_data)
return self._transcribe_audio(compressed_audio) with current_event.create_span("Audio Processing"):
compressed_audio = self._compress_audio(file_data)
with current_event.create_span("Transcription Generation"):
transcription = self._transcribe_audio(compressed_audio)
return transcription
def _compress_audio(self, audio_data): def _compress_audio(self, audio_data):
self._log("Compressing audio") self._log("Compressing audio")

View File

@@ -5,6 +5,7 @@ from langchain_core.runnables import RunnablePassthrough
from common.extensions import db, minio_client from common.extensions import db, minio_client
from common.utils.model_utils import create_language_template from common.utils.model_utils import create_language_template
from .processor import Processor from .processor import Processor
from common.utils.business_event_context import current_event
class HTMLProcessor(Processor): class HTMLProcessor(Processor):
@@ -30,8 +31,10 @@ class HTMLProcessor(Processor):
) )
html_content = file_data.decode('utf-8') html_content = file_data.decode('utf-8')
extracted_html, title = self._parse_html(html_content) with current_event.create_span("HTML Content Extraction"):
markdown = self._generate_markdown_from_html(extracted_html) extracted_html, title = self._parse_html(html_content)
with current_event.create_span("Markdown Generation"):
markdown = self._generate_markdown_from_html(extracted_html)
self._save_markdown(markdown) self._save_markdown(markdown)
self._log("Finished processing HTML") self._log("Finished processing HTML")

View File

@@ -10,6 +10,7 @@ from langchain_core.runnables import RunnablePassthrough
from common.extensions import minio_client from common.extensions import minio_client
from common.utils.model_utils import create_language_template from common.utils.model_utils import create_language_template
from .processor import Processor from .processor import Processor
from common.utils.business_event_context import current_event
class PDFProcessor(Processor): class PDFProcessor(Processor):
@@ -32,13 +33,14 @@ class PDFProcessor(Processor):
self.document_version.file_name self.document_version.file_name
) )
extracted_content = self._extract_content(file_data) with current_event.create_span("PDF Extraction"):
structured_content, title = self._structure_content(extracted_content) extracted_content = self._extract_content(file_data)
structured_content, title = self._structure_content(extracted_content)
llm_chunks = self._split_content_for_llm(structured_content) with current_event.create_span("Markdown Generation"):
markdown = self._process_chunks_with_llm(llm_chunks) llm_chunks = self._split_content_for_llm(structured_content)
markdown = self._process_chunks_with_llm(llm_chunks)
self._save_markdown(markdown) self._save_markdown(markdown)
self._log("Finished processing PDF") self._log("Finished processing PDF")
return markdown, title return markdown, title
except Exception as e: except Exception as e:

View File

@@ -1,11 +1,13 @@
# transcription_processor.py # transcription_processor.py
from common.utils.model_utils import create_language_template
from .processor import Processor
from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_core.output_parsers import StrOutputParser from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough from langchain_core.runnables import RunnablePassthrough
from common.utils.model_utils import create_language_template
from .processor import Processor
from common.utils.business_event_context import current_event
class TranscriptionProcessor(Processor): class TranscriptionProcessor(Processor):
def __init__(self, tenant, model_variables, document_version): def __init__(self, tenant, model_variables, document_version):
@@ -16,12 +18,14 @@ class TranscriptionProcessor(Processor):
def process(self): def process(self):
self._log("Starting Transcription processing") self._log("Starting Transcription processing")
try: try:
transcription = self._get_transcription() with current_event.create_span("Transcription Generation"):
chunks = self._chunk_transcription(transcription) transcription = self._get_transcription()
markdown_chunks = self._process_chunks(chunks) with current_event.create_span("Markdown Generation"):
full_markdown = self._combine_markdown_chunks(markdown_chunks) chunks = self._chunk_transcription(transcription)
self._save_markdown(full_markdown) markdown_chunks = self._process_chunks(chunks)
self._log("Finished processing Transcription") full_markdown = self._combine_markdown_chunks(markdown_chunks)
self._save_markdown(full_markdown)
self._log("Finished processing Transcription")
return full_markdown, self._extract_title_from_markdown(full_markdown) return full_markdown, self._extract_title_from_markdown(full_markdown)
except Exception as e: except Exception as e:
self._log(f"Error processing Transcription: {str(e)}", level='error') self._log(f"Error processing Transcription: {str(e)}", level='error')

View File

@@ -24,6 +24,9 @@ from eveai_workers.Processors.html_processor import HTMLProcessor
from eveai_workers.Processors.pdf_processor import PDFProcessor from eveai_workers.Processors.pdf_processor import PDFProcessor
from eveai_workers.Processors.srt_processor import SRTProcessor from eveai_workers.Processors.srt_processor import SRTProcessor
from common.utils.business_event import BusinessEvent
from common.utils.business_event_context import current_event
# Healthcheck task # Healthcheck task
@current_celery.task(name='ping', queue='embeddings') @current_celery.task(name='ping', queue='embeddings')
@@ -33,76 +36,78 @@ def ping():
@current_celery.task(name='create_embeddings', queue='embeddings') @current_celery.task(name='create_embeddings', queue='embeddings')
def create_embeddings(tenant_id, document_version_id): def create_embeddings(tenant_id, document_version_id):
current_app.logger.info(f'Creating embeddings for tenant {tenant_id} on document version {document_version_id}.') # BusinessEvent creates a context, which is why we need to use it with a with block
with BusinessEvent('Create Embeddings', tenant_id, document_version_id=document_version_id):
current_app.logger.info(f'Creating embeddings for tenant {tenant_id} on document version {document_version_id}')
try:
# Retrieve Tenant for which we are processing
tenant = Tenant.query.get(tenant_id)
if tenant is None:
raise Exception(f'Tenant {tenant_id} not found')
try: # Ensure we are working in the correct database schema
# Retrieve Tenant for which we are processing Database(tenant_id).switch_schema()
tenant = Tenant.query.get(tenant_id)
if tenant is None:
raise Exception(f'Tenant {tenant_id} not found')
# Ensure we are working in the correct database schema # Select variables to work with depending on tenant and model
Database(tenant_id).switch_schema() model_variables = select_model_variables(tenant)
current_app.logger.debug(f'Model variables: {model_variables}')
# Select variables to work with depending on tenant and model # Retrieve document version to process
model_variables = select_model_variables(tenant) document_version = DocumentVersion.query.get(document_version_id)
current_app.logger.debug(f'Model variables: {model_variables}') if document_version is None:
raise Exception(f'Document version {document_version_id} not found')
# Retrieve document version to process except Exception as e:
document_version = DocumentVersion.query.get(document_version_id) current_app.logger.error(f'Create Embeddings request received '
if document_version is None: f'for non existing document version {document_version_id} '
raise Exception(f'Document version {document_version_id} not found') f'for tenant {tenant_id}, '
f'error: {e}')
raise
except Exception as e: try:
current_app.logger.error(f'Create Embeddings request received ' db.session.add(document_version)
f'for non existing document version {document_version_id} '
f'for tenant {tenant_id}, '
f'error: {e}')
raise
try: # start processing
db.session.add(document_version) document_version.processing = True
document_version.processing_started_at = dt.now(tz.utc)
document_version.processing_finished_at = None
document_version.processing_error = None
# start processing db.session.commit()
document_version.processing = True except SQLAlchemyError as e:
document_version.processing_started_at = dt.now(tz.utc) current_app.logger.error(f'Unable to save Embedding status information '
document_version.processing_finished_at = None f'in document version {document_version_id} '
document_version.processing_error = None f'for tenant {tenant_id}')
raise
db.session.commit() delete_embeddings_for_document_version(document_version)
except SQLAlchemyError as e:
current_app.logger.error(f'Unable to save Embedding status information '
f'in document version {document_version_id} '
f'for tenant {tenant_id}')
raise
delete_embeddings_for_document_version(document_version) try:
match document_version.file_type:
case 'pdf':
process_pdf(tenant, model_variables, document_version)
case 'html':
process_html(tenant, model_variables, document_version)
case 'srt':
process_srt(tenant, model_variables, document_version)
case 'mp4' | 'mp3' | 'ogg':
process_audio(tenant, model_variables, document_version)
case _:
raise Exception(f'No functionality defined for file type {document_version.file_type} '
f'for tenant {tenant_id} '
f'while creating embeddings for document version {document_version_id}')
current_event.log("Finished Embedding Creation Task")
try: except Exception as e:
match document_version.file_type: current_app.logger.error(f'Error creating embeddings for tenant {tenant_id} '
case 'pdf': f'on document version {document_version_id} '
process_pdf(tenant, model_variables, document_version) f'error: {e}')
case 'html': document_version.processing = False
process_html(tenant, model_variables, document_version) document_version.processing_finished_at = dt.now(tz.utc)
case 'srt': document_version.processing_error = str(e)[:255]
process_srt(tenant, model_variables, document_version) db.session.commit()
case 'mp4' | 'mp3' | 'ogg': create_embeddings.update_state(state=states.FAILURE)
process_audio(tenant, model_variables, document_version) raise
case _:
raise Exception(f'No functionality defined for file type {document_version.file_type} '
f'for tenant {tenant_id} '
f'while creating embeddings for document version {document_version_id}')
except Exception as e:
current_app.logger.error(f'Error creating embeddings for tenant {tenant_id} '
f'on document version {document_version_id} '
f'error: {e}')
document_version.processing = False
document_version.processing_finished_at = dt.now(tz.utc)
document_version.processing_error = str(e)[:255]
db.session.commit()
create_embeddings.update_state(state=states.FAILURE)
raise
def delete_embeddings_for_document_version(document_version): def delete_embeddings_for_document_version(document_version):
@@ -118,35 +123,43 @@ def delete_embeddings_for_document_version(document_version):
def process_pdf(tenant, model_variables, document_version): def process_pdf(tenant, model_variables, document_version):
processor = PDFProcessor(tenant, model_variables, document_version) with current_event.create_span("PDF Processing"):
markdown, title = processor.process() processor = PDFProcessor(tenant, model_variables, document_version)
markdown, title = processor.process()
# Process markdown and embed # Process markdown and embed
embed_markdown(tenant, model_variables, document_version, markdown, title) with current_event.create_span("Embedding"):
embed_markdown(tenant, model_variables, document_version, markdown, title)
def process_html(tenant, model_variables, document_version): def process_html(tenant, model_variables, document_version):
processor = HTMLProcessor(tenant, model_variables, document_version) with current_event.create_span("HTML Processing"):
markdown, title = processor.process() processor = HTMLProcessor(tenant, model_variables, document_version)
markdown, title = processor.process()
# Process markdown and embed # Process markdown and embed
embed_markdown(tenant, model_variables, document_version, markdown, title) with current_event.create_span("Embedding"):
embed_markdown(tenant, model_variables, document_version, markdown, title)
def process_audio(tenant, model_variables, document_version): def process_audio(tenant, model_variables, document_version):
processor = AudioProcessor(tenant, model_variables, document_version) with current_event.create_span("Audio Processing"):
markdown, title = processor.process() processor = AudioProcessor(tenant, model_variables, document_version)
markdown, title = processor.process()
# Process markdown and embed # Process markdown and embed
embed_markdown(tenant, model_variables, document_version, markdown, title) with current_event.create_span("Embedding"):
embed_markdown(tenant, model_variables, document_version, markdown, title)
def process_srt(tenant, model_variables, document_version): def process_srt(tenant, model_variables, document_version):
processor = SRTProcessor(tenant, model_variables, document_version) with current_event.create_span("SRT Processing"):
markdown, title = processor.process() processor = SRTProcessor(tenant, model_variables, document_version)
markdown, title = processor.process()
# Process markdown and embed # Process markdown and embed
embed_markdown(tenant, model_variables, document_version, markdown, title) with current_event.create_span("Embedding"):
embed_markdown(tenant, model_variables, document_version, markdown, title)
def embed_markdown(tenant, model_variables, document_version, markdown, title): def embed_markdown(tenant, model_variables, document_version, markdown, title):
@@ -181,6 +194,7 @@ def embed_markdown(tenant, model_variables, document_version, markdown, title):
def enrich_chunks(tenant, model_variables, document_version, title, chunks): def enrich_chunks(tenant, model_variables, document_version, title, chunks):
current_event.log("Starting Enriching Chunks Processing")
current_app.logger.debug(f'Enriching chunks for tenant {tenant.id} ' current_app.logger.debug(f'Enriching chunks for tenant {tenant.id} '
f'on document version {document_version.id}') f'on document version {document_version.id}')
@@ -213,11 +227,13 @@ def enrich_chunks(tenant, model_variables, document_version, title, chunks):
current_app.logger.debug(f'Finished enriching chunks for tenant {tenant.id} ' current_app.logger.debug(f'Finished enriching chunks for tenant {tenant.id} '
f'on document version {document_version.id}') f'on document version {document_version.id}')
current_event.log("Finished Enriching Chunks Processing")
return enriched_chunks return enriched_chunks
def summarize_chunk(tenant, model_variables, document_version, chunk): def summarize_chunk(tenant, model_variables, document_version, chunk):
current_event.log("Starting Summarizing Chunk")
current_app.logger.debug(f'Summarizing chunk for tenant {tenant.id} ' current_app.logger.debug(f'Summarizing chunk for tenant {tenant.id} '
f'on document version {document_version.id}') f'on document version {document_version.id}')
llm = model_variables['llm'] llm = model_variables['llm']
@@ -235,6 +251,7 @@ def summarize_chunk(tenant, model_variables, document_version, chunk):
summary = chain.invoke({"text": chunk}) summary = chain.invoke({"text": chunk})
current_app.logger.debug(f'Finished summarizing chunk for tenant {tenant.id} ' current_app.logger.debug(f'Finished summarizing chunk for tenant {tenant.id} '
f'on document version {document_version.id}.') f'on document version {document_version.id}.')
current_event.log("Finished Summarizing Chunk")
return summary return summary
except LangChainException as e: except LangChainException as e:
current_app.logger.error(f'Error creating summary for chunk enrichment for tenant {tenant.id} ' current_app.logger.error(f'Error creating summary for chunk enrichment for tenant {tenant.id} '
@@ -244,6 +261,7 @@ def summarize_chunk(tenant, model_variables, document_version, chunk):
def embed_chunks(tenant, model_variables, document_version, chunks): def embed_chunks(tenant, model_variables, document_version, chunks):
current_event.log("Starting Embedding Chunks Processing")
current_app.logger.debug(f'Embedding chunks for tenant {tenant.id} ' current_app.logger.debug(f'Embedding chunks for tenant {tenant.id} '
f'on document version {document_version.id}') f'on document version {document_version.id}')
embedding_model = model_variables['embedding_model'] embedding_model = model_variables['embedding_model']
@@ -268,6 +286,8 @@ def embed_chunks(tenant, model_variables, document_version, chunks):
new_embedding.embedding = embedding new_embedding.embedding = embedding
new_embeddings.append(new_embedding) new_embeddings.append(new_embedding)
current_app.logger.debug(f'Finished embedding chunks for tenant {tenant.id} ')
return new_embeddings return new_embeddings
@@ -281,244 +301,6 @@ def log_parsing_info(tenant, tags, included_elements, excluded_elements, exclude
current_app.embed_tuning_logger.debug(f'First element to parse: {elements_to_parse[0]}') current_app.embed_tuning_logger.debug(f'First element to parse: {elements_to_parse[0]}')
# def process_youtube(tenant, model_variables, document_version):
# download_file_name = f'{document_version.id}.mp4'
# compressed_file_name = f'{document_version.id}.mp3'
# transcription_file_name = f'{document_version.id}.txt'
# markdown_file_name = f'{document_version.id}.md'
#
# # Remove existing files (in case of a re-processing of the file
# minio_client.delete_document_file(tenant.id, document_version.doc_id, document_version.language,
# document_version.id, download_file_name)
# minio_client.delete_document_file(tenant.id, document_version.doc_id, document_version.language,
# document_version.id, compressed_file_name)
# minio_client.delete_document_file(tenant.id, document_version.doc_id, document_version.language,
# document_version.id, transcription_file_name)
# minio_client.delete_document_file(tenant.id, document_version.doc_id, document_version.language,
# document_version.id, markdown_file_name)
#
# of, title, description, author = download_youtube(document_version.url, tenant.id, document_version,
# download_file_name)
# document_version.system_context = f'Title: {title}\nDescription: {description}\nAuthor: {author}'
# compress_audio(tenant.id, document_version, download_file_name, compressed_file_name)
# transcribe_audio(tenant.id, document_version, compressed_file_name, transcription_file_name, model_variables)
# annotate_transcription(tenant, document_version, transcription_file_name, markdown_file_name, model_variables)
#
# potential_chunks = create_potential_chunks_for_markdown(tenant.id, document_version, markdown_file_name)
# actual_chunks = combine_chunks_for_markdown(potential_chunks, model_variables['min_chunk_size'],
# model_variables['max_chunk_size'])
#
# enriched_chunks = enrich_chunks(tenant, document_version, actual_chunks)
# embeddings = embed_chunks(tenant, model_variables, document_version, enriched_chunks)
#
# try:
# db.session.add(document_version)
# document_version.processing_finished_at = dt.now(tz.utc)
# document_version.processing = False
# db.session.add_all(embeddings)
# db.session.commit()
# except SQLAlchemyError as e:
# current_app.logger.error(f'Error saving embedding information for tenant {tenant.id} '
# f'on Youtube document version {document_version.id}'
# f'error: {e}')
# raise
#
# current_app.logger.info(f'Embeddings created successfully for tenant {tenant.id} '
# f'on Youtube document version {document_version.id} :-)')
#
#
# def download_youtube(url, tenant_id, document_version, file_name):
# try:
# current_app.logger.info(f'Downloading YouTube video: {url} for tenant: {tenant_id}')
# yt = YouTube(url)
# stream = yt.streams.get_audio_only()
#
# with tempfile.NamedTemporaryFile(delete=False) as temp_file:
# stream.download(output_path=temp_file.name)
# with open(temp_file.name, 'rb') as f:
# file_data = f.read()
#
# minio_client.upload_document_file(tenant_id, document_version.doc_id, document_version.language,
# document_version.id,
# file_name, file_data)
#
# current_app.logger.info(f'Downloaded YouTube video: {url} for tenant: {tenant_id}')
# return file_name, yt.title, yt.description, yt.author
# except Exception as e:
# current_app.logger.error(f'Error downloading YouTube video: {url} for tenant: {tenant_id} with error: {e}')
# raise
#
#
# def compress_audio(tenant_id, document_version, input_file, output_file):
# try:
# current_app.logger.info(f'Compressing audio for tenant: {tenant_id}')
#
# input_data = minio_client.download_document_file(tenant_id, document_version.doc_id, document_version.language,
# document_version.id, input_file)
#
# with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_input:
# temp_input.write(input_data)
# temp_input.flush()
#
# with tempfile.NamedTemporaryFile(delete=False, suffix='.mp3') as temp_output:
# result = subprocess.run(
# ['ffmpeg', '-i', temp_input.name, '-b:a', '64k', '-f', 'mp3', temp_output.name],
# capture_output=True,
# text=True
# )
#
# if result.returncode != 0:
# raise Exception(f"Compression failed: {result.stderr}")
#
# with open(temp_output.name, 'rb') as f:
# compressed_data = f.read()
#
# minio_client.upload_document_file(tenant_id, document_version.doc_id, document_version.language,
# document_version.id,
# output_file, compressed_data)
#
# current_app.logger.info(f'Compressed audio for tenant: {tenant_id}')
# except Exception as e:
# current_app.logger.error(f'Error compressing audio for tenant: {tenant_id} with error: {e}')
# raise
#
#
# def transcribe_audio(tenant_id, document_version, input_file, output_file, model_variables):
# try:
# current_app.logger.info(f'Transcribing audio for tenant: {tenant_id}')
# client = model_variables['transcription_client']
# model = model_variables['transcription_model']
#
# # Download the audio file from MinIO
# audio_data = minio_client.download_document_file(tenant_id, document_version.doc_id, document_version.language,
# document_version.id, input_file)
#
# # Load the audio data into pydub
# audio = AudioSegment.from_mp3(io.BytesIO(audio_data))
#
# # Define segment length (e.g., 10 minutes)
# segment_length = 10 * 60 * 1000 # 10 minutes in milliseconds
#
# transcriptions = []
#
# # Split audio into segments and transcribe each
# for i, chunk in enumerate(audio[::segment_length]):
# current_app.logger.debug(f'Transcribing chunk {i + 1} of {len(audio) // segment_length + 1}')
#
# with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_audio:
# chunk.export(temp_audio.name, format="mp3")
#
# with open(temp_audio.name, 'rb') as audio_segment:
# transcription = client.audio.transcriptions.create(
# file=audio_segment,
# model=model,
# language=document_version.language,
# response_format='verbose_json',
# )
#
# transcriptions.append(transcription.text)
#
# os.unlink(temp_audio.name) # Delete the temporary file
#
# # Combine all transcriptions
# full_transcription = " ".join(transcriptions)
#
# # Upload the full transcription to MinIO
# minio_client.upload_document_file(
# tenant_id,
# document_version.doc_id,
# document_version.language,
# document_version.id,
# output_file,
# full_transcription.encode('utf-8')
# )
#
# current_app.logger.info(f'Transcribed audio for tenant: {tenant_id}')
# except Exception as e:
# current_app.logger.error(f'Error transcribing audio for tenant: {tenant_id}, with error: {e}')
# raise
#
#
# def annotate_transcription(tenant, document_version, input_file, output_file, model_variables):
# try:
# current_app.logger.debug(f'Annotating transcription for tenant {tenant.id}')
#
# char_splitter = CharacterTextSplitter(separator='.',
# chunk_size=model_variables['annotation_chunk_length'],
# chunk_overlap=0)
#
# headers_to_split_on = [
# ("#", "Header 1"),
# ("##", "Header 2"),
# ]
# markdown_splitter = MarkdownHeaderTextSplitter(headers_to_split_on, strip_headers=False)
#
# llm = model_variables['llm']
# template = model_variables['transcript_template']
# language_template = create_language_template(template, document_version.language)
# transcript_prompt = ChatPromptTemplate.from_template(language_template)
# setup = RunnablePassthrough()
# output_parser = StrOutputParser()
#
# # Download the transcription file from MinIO
# transcript_data = minio_client.download_document_file(tenant.id, document_version.doc_id,
# document_version.language, document_version.id,
# input_file)
# transcript = transcript_data.decode('utf-8')
#
# chain = setup | transcript_prompt | llm | output_parser
#
# chunks = char_splitter.split_text(transcript)
# all_markdown_chunks = []
# last_markdown_chunk = ''
# for chunk in chunks:
# current_app.logger.debug(f'Annotating next chunk of {len(chunks)} for tenant {tenant.id}')
# full_input = last_markdown_chunk + '\n' + chunk
# if tenant.embed_tuning:
# current_app.embed_tuning_logger.debug(f'Annotating chunk: \n '
# f'------------------\n'
# f'{full_input}\n'
# f'------------------\n')
# input_transcript = {'transcript': full_input}
# markdown = chain.invoke(input_transcript)
# # GPT-4o returns some kind of content description: ```markdown <text> ```
# if markdown.startswith("```markdown"):
# markdown = "\n".join(markdown.strip().split("\n")[1:-1])
# if tenant.embed_tuning:
# current_app.embed_tuning_logger.debug(f'Markdown Received: \n '
# f'------------------\n'
# f'{markdown}\n'
# f'------------------\n')
# md_header_splits = markdown_splitter.split_text(markdown)
# markdown_chunks = [doc.page_content for doc in md_header_splits]
# # claude-3.5-sonnet returns introductory text
# if not markdown_chunks[0].startswith('#'):
# markdown_chunks.pop(0)
# last_markdown_chunk = markdown_chunks[-1]
# last_markdown_chunk = "\n".join(markdown.strip().split("\n")[1:])
# markdown_chunks.pop()
# all_markdown_chunks += markdown_chunks
#
# all_markdown_chunks += [last_markdown_chunk]
#
# annotated_transcript = '\n'.join(all_markdown_chunks)
#
# # Upload the annotated transcript to MinIO
# minio_client.upload_document_file(
# tenant.id,
# document_version.doc_id,
# document_version.language,
# document_version.id,
# output_file,
# annotated_transcript.encode('utf-8')
# )
#
# current_app.logger.info(f'Annotated transcription for tenant {tenant.id}')
# except Exception as e:
# current_app.logger.error(f'Error annotating transcription for tenant {tenant.id}, with error: {e}')
# raise
def create_potential_chunks_for_markdown(tenant_id, document_version, input_file): def create_potential_chunks_for_markdown(tenant_id, document_version, input_file):
try: try:
current_app.logger.info(f'Creating potential chunks for tenant {tenant_id}') current_app.logger.info(f'Creating potential chunks for tenant {tenant_id}')

View File

@@ -0,0 +1,49 @@
"""LLM Metrics Added
Revision ID: 25588210dab2
Revises: 083ccd8206ea
Create Date: 2024-09-17 12:44:12.242990
"""
from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
# revision identifiers, used by Alembic.
revision = '25588210dab2'
down_revision = '083ccd8206ea'
branch_labels = None
depends_on = None
def upgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.create_table('llm_usage_metric',
sa.Column('id', sa.Integer(), nullable=False),
sa.Column('tenant_id', sa.Integer(), nullable=False),
sa.Column('environment', sa.String(length=20), nullable=False),
sa.Column('activity', sa.String(length=20), nullable=False),
sa.Column('sub_activity', sa.String(length=20), nullable=False),
sa.Column('activity_detail', sa.String(length=50), nullable=True),
sa.Column('session_id', sa.String(length=50), nullable=True),
sa.Column('interaction_id', sa.Integer(), nullable=True),
sa.Column('document_version_id', sa.Integer(), nullable=True),
sa.Column('prompt_tokens', sa.Integer(), nullable=True),
sa.Column('completion_tokens', sa.Integer(), nullable=True),
sa.Column('total_tokens', sa.Integer(), nullable=True),
sa.Column('cost', sa.Float(), nullable=True),
sa.Column('latency', sa.Float(), nullable=True),
sa.Column('model_name', sa.String(length=50), nullable=False),
sa.Column('timestamp', sa.DateTime(), nullable=False),
sa.Column('additional_info', postgresql.JSONB(astext_type=sa.Text()), nullable=True),
sa.PrimaryKeyConstraint('id'),
schema='public'
)
# ### end Alembic commands ###
def downgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.drop_table('llm_usage_metric', schema='public')
# ### end Alembic commands ###

View File

@@ -0,0 +1,49 @@
"""Corrected BusinessEventLog
Revision ID: 2cbdb23ae02e
Revises: e3c6ff8c22df
Create Date: 2024-09-25 10:17:40.154566
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = '2cbdb23ae02e'
down_revision = 'e3c6ff8c22df'
branch_labels = None
depends_on = None
def upgrade():
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table('business_event_log', schema=None) as batch_op:
batch_op.alter_column('span_id',
existing_type=sa.VARCHAR(length=50),
nullable=True)
batch_op.alter_column('span_name',
existing_type=sa.VARCHAR(length=50),
nullable=True)
batch_op.alter_column('parent_span_id',
existing_type=sa.VARCHAR(length=50),
nullable=True)
# ### end Alembic commands ###
def downgrade():
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table('business_event_log', schema=None) as batch_op:
batch_op.alter_column('parent_span_id',
existing_type=sa.VARCHAR(length=50),
nullable=False)
batch_op.alter_column('span_name',
existing_type=sa.VARCHAR(length=50),
nullable=False)
batch_op.alter_column('span_id',
existing_type=sa.VARCHAR(length=50),
nullable=False)
# ### end Alembic commands ###

View File

@@ -0,0 +1,38 @@
"""session_id is uuid iso integeger
Revision ID: 829094f07d44
Revises: 2cbdb23ae02e
Create Date: 2024-09-27 09:19:13.201988
"""
from alembic import op
import sqlalchemy as sa
# revision identifiers, used by Alembic.
revision = '829094f07d44'
down_revision = '2cbdb23ae02e'
branch_labels = None
depends_on = None
def upgrade():
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table('business_event_log', schema=None) as batch_op:
batch_op.alter_column('chat_session_id',
existing_type=sa.INTEGER(),
type_=sa.String(length=50),
existing_nullable=True)
# ### end Alembic commands ###
def downgrade():
# ### commands auto generated by Alembic - please adjust! ###
with op.batch_alter_table('business_event_log', schema=None) as batch_op:
batch_op.alter_column('chat_session_id',
existing_type=sa.String(length=50),
type_=sa.INTEGER(),
existing_nullable=True)
# ### end Alembic commands ###

View File

@@ -0,0 +1,67 @@
"""Updated Monitoring Setup
Revision ID: e3c6ff8c22df
Revises: 25588210dab2
Create Date: 2024-09-25 10:05:57.684506
"""
from alembic import op
import sqlalchemy as sa
from sqlalchemy.dialects import postgresql
# revision identifiers, used by Alembic.
revision = 'e3c6ff8c22df'
down_revision = '25588210dab2'
branch_labels = None
depends_on = None
def upgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.create_table('business_event_log',
sa.Column('id', sa.Integer(), nullable=False),
sa.Column('timestamp', sa.DateTime(), nullable=False),
sa.Column('event_type', sa.String(length=50), nullable=False),
sa.Column('tenant_id', sa.Integer(), nullable=False),
sa.Column('trace_id', sa.String(length=50), nullable=False),
sa.Column('span_id', sa.String(length=50), nullable=False),
sa.Column('span_name', sa.String(length=50), nullable=False),
sa.Column('parent_span_id', sa.String(length=50), nullable=False),
sa.Column('document_version_id', sa.Integer(), nullable=True),
sa.Column('chat_session_id', sa.Integer(), nullable=True),
sa.Column('interaction_id', sa.Integer(), nullable=True),
sa.Column('environment', sa.String(length=20), nullable=True),
sa.Column('message', sa.Text(), nullable=True),
sa.PrimaryKeyConstraint('id'),
schema='public'
)
op.drop_table('llm_usage_metric')
# ### end Alembic commands ###
def downgrade():
# ### commands auto generated by Alembic - please adjust! ###
op.create_table('llm_usage_metric',
sa.Column('id', sa.INTEGER(), autoincrement=True, nullable=False),
sa.Column('tenant_id', sa.INTEGER(), autoincrement=False, nullable=False),
sa.Column('environment', sa.VARCHAR(length=20), autoincrement=False, nullable=False),
sa.Column('activity', sa.VARCHAR(length=20), autoincrement=False, nullable=False),
sa.Column('sub_activity', sa.VARCHAR(length=20), autoincrement=False, nullable=False),
sa.Column('activity_detail', sa.VARCHAR(length=50), autoincrement=False, nullable=True),
sa.Column('session_id', sa.VARCHAR(length=50), autoincrement=False, nullable=True),
sa.Column('interaction_id', sa.INTEGER(), autoincrement=False, nullable=True),
sa.Column('document_version_id', sa.INTEGER(), autoincrement=False, nullable=True),
sa.Column('prompt_tokens', sa.INTEGER(), autoincrement=False, nullable=True),
sa.Column('completion_tokens', sa.INTEGER(), autoincrement=False, nullable=True),
sa.Column('total_tokens', sa.INTEGER(), autoincrement=False, nullable=True),
sa.Column('cost', sa.DOUBLE_PRECISION(precision=53), autoincrement=False, nullable=True),
sa.Column('latency', sa.DOUBLE_PRECISION(precision=53), autoincrement=False, nullable=True),
sa.Column('model_name', sa.VARCHAR(length=50), autoincrement=False, nullable=False),
sa.Column('timestamp', postgresql.TIMESTAMP(), autoincrement=False, nullable=False),
sa.Column('additional_info', postgresql.JSONB(astext_type=sa.Text()), autoincrement=False, nullable=True),
sa.PrimaryKeyConstraint('id', name='llm_usage_metric_pkey')
)
op.drop_table('business_event_log', schema='public')
# ### end Alembic commands ###

View File

@@ -159,13 +159,12 @@ http {
} }
location /flower/ { location /flower/ {
proxy_pass http://127.0.0.1:5555/; proxy_pass http://flower:5555/flower/;
proxy_set_header Host $host; proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr; proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme; proxy_set_header X-Forwarded-Proto $scheme;
} }
} }
include sites-enabled/*; include sites-enabled/*;

View File

@@ -26,22 +26,22 @@ greenlet~=3.0.3
gunicorn~=22.0.0 gunicorn~=22.0.0
Jinja2~=3.1.4 Jinja2~=3.1.4
kombu~=5.3.7 kombu~=5.3.7
langchain~=0.2.7 langchain~=0.3.0
langchain-anthropic~=0.1.19 langchain-anthropic~=0.2.0
langchain-community~=0.2.7 langchain-community~=0.3.0
langchain-core~=0.2.16 langchain-core~=0.3.0
langchain-mistralai~=0.1.9 langchain-mistralai~=0.2.0
langchain-openai~=0.1.15 langchain-openai~=0.2.0
langchain-postgres~=0.0.9 langchain-postgres~=0.0.12
langchain-text-splitters~=0.2.2 langchain-text-splitters~=0.3.0
langcodes~=3.4.0 langcodes~=3.4.0
langdetect~=1.0.9 langdetect~=1.0.9
langsmith~=0.1.81 langsmith~=0.1.81
openai~=1.35.13 openai~=1.45.1
pg8000~=1.31.2 pg8000~=1.31.2
pgvector~=0.2.5 pgvector~=0.2.5
pycryptodome~=3.20.0 pycryptodome~=3.20.0
pydantic~=2.7.4 pydantic~=2.9.1
PyJWT~=2.8.0 PyJWT~=2.8.0
PySocks~=1.7.1 PySocks~=1.7.1
python-dateutil~=2.9.0.post0 python-dateutil~=2.9.0.post0
@@ -53,7 +53,7 @@ pytz~=2024.1
PyYAML~=6.0.2rc1 PyYAML~=6.0.2rc1
redis~=5.0.4 redis~=5.0.4
requests~=2.32.3 requests~=2.32.3
SQLAlchemy~=2.0.31 SQLAlchemy~=2.0.35
tiktoken~=0.7.0 tiktoken~=0.7.0
tzdata~=2024.1 tzdata~=2024.1
urllib3~=2.2.2 urllib3~=2.2.2
@@ -63,7 +63,7 @@ zxcvbn~=4.4.28
groq~=0.9.0 groq~=0.9.0
pydub~=0.25.1 pydub~=0.25.1
argparse~=1.4.0 argparse~=1.4.0
portkey_ai~=1.8.2 portkey_ai~=1.8.7
minio~=7.2.7 minio~=7.2.7
Werkzeug~=3.0.3 Werkzeug~=3.0.3
itsdangerous~=2.2.0 itsdangerous~=2.2.0
@@ -76,4 +76,7 @@ PyPDF2~=3.0.1
flask-restx~=1.3.0 flask-restx~=1.3.0
prometheus-flask-exporter~=0.23.1 prometheus-flask-exporter~=0.23.1
flask-healthz~=1.0.1 flask-healthz~=1.0.1
langsmith~=0.1.121
anthropic~=0.34.2
prometheus-client~=0.20.0
flower~=2.0.1

View File

@@ -8,7 +8,7 @@ export PYTHONPATH="$PROJECT_DIR/patched_packages:$PYTHONPATH:$PROJECT_DIR" # In
chown -R appuser:appuser /app/logs chown -R appuser:appuser /app/logs
# Start a worker for the 'embeddings' queue with higher concurrency # Start a worker for the 'embeddings' queue with higher concurrency
celery -A eveai_workers.celery worker --loglevel=info -Q embeddings --autoscale=2,8 --hostname=embeddings_worker@%h & celery -A eveai_workers.celery worker --loglevel=debug -Q embeddings --autoscale=2,8 --hostname=embeddings_worker@%h &
# Start a worker for the 'llm_interactions' queue with auto-scaling - not necessary, in eveai_chat_workers # Start a worker for the 'llm_interactions' queue with auto-scaling - not necessary, in eveai_chat_workers
# celery -A eveai_workers.celery worker --loglevel=info - Q llm_interactions --autoscale=2,8 --hostname=interactions_worker@%h & # celery -A eveai_workers.celery worker --loglevel=info - Q llm_interactions --autoscale=2,8 --hostname=interactions_worker@%h &

33
scripts/start_flower.sh Executable file → Normal file
View File

@@ -1,9 +1,28 @@
#!/usr/bin/env bash #!/bin/bash
set -e
cd "/Volumes/OWC4M2_1/Dropbox/Josako's Dev/Josako/EveAI/Development/eveAI/" || exit 1 # scripts/start_flower.sh
source "/Volumes/OWC4M2_1/Dropbox/Josako's Dev/Josako/EveAI/Development/eveAI/.venv/bin/activate"
# on development machine, no authentication required # Set default values
export FLOWER_UNAUTHENTICATED_API=True REDIS_HOST=${REDIS_URL:-redis}
# Start a worker for the 'embeddings' queue with higher concurrency REDIS_PORT=${REDIS_PORT:-6379}
celery -A eveai_workers.celery flower
# Set environment-specific variables
if [ "$FLASK_ENV" = "production" ]; then
# Production settings
export FLOWER_BASIC_AUTH="${FLOWER_USER}:${FLOWER_PASSWORD}"
export FLOWER_BROKER_URL="redis://${REDIS_USER}:${REDIS_PASS}@${REDIS_URL}:${REDIS_PORT}/0"
export CELERY_BROKER_URL="redis://${REDIS_USER}:${REDIS_PASS}@${REDIS_URL}:${REDIS_PORT}/0"
else
# Development settings
export FLOWER_BROKER_URL="redis://${REDIS_HOST}:${REDIS_PORT}/0"
export CELERY_BROKER_URL="redis://${REDIS_HOST}:${REDIS_PORT}/0"
fi
echo $BROKER_URL
echo "----------"
# Start Flower
exec celery flower \
--url-prefix=/flower \
--port=5555